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Curve–straight probabilistic engagement zones (CSPEZ) quantify spatial regions an evader
should avoid to mitigate capture risk against a turn-rate limited pursuer performing a
curve–straight path with uncertain parameters (position, heading, velocity, range, and maximum
turn rate). This research presents strategies and algorithms for generating evader paths that
minimize capture risk from a pursuer when such uncertainty exists. We begin by deriving
an analytic solution for the deterministic curve–straight engagement zone (CSBEZ). We then
extend this model into a probabilistic framework by conducting a sensitivity analysis using
Monte Carlo sampling, linearization, quadratic approximation, and neural network regression
to account for parameter uncertainty. The accuracy, memory usage, and computational cost
of these methods are evaluated in simulation. Finally, we incorporate CSPEZ constraints
into a path planning algorithm to generate safe trajectories that explicitly consider pursuer
uncertainty.

I. Introduction

Navigating hostile or contested areas is a common requirement in many mission scenarios, particularly for unmanned
aerial vehicle (UAV) reconnaissance. These vehicles must often operate in environments where detection or

engagement by adversaries presents a significant risk to the platform. To ensure mission success, it is essential to
generate safe and efficient trajectories [1, 2] that minimize the need for abrupt evasive actions during execution. A key
challenge arises when knowledge of the adversarial environment, such as the unknown positions or capabilities of the
threat, is unknown or incomplete. If not properly accounted for, this uncertainty can cause UAVs to underestimate or
overestimate the risks associated with specific paths. Therefore, robust planning approaches must explicitly incorporate
this uncertainty to generate viable and survivable routes.

In this work, we use engagement zones (EZ) to model adversarial threats. EZs are regions an evader must avoid to
guarantee that there will be no engagement with a pursuer. Past work has defined EZs using basic cardioid shapes [3–5].
These works created path planning algorithms for an evader to avoid engagements [3], accounting for two EZs [4], and
many EZs [5]. All these methods use the simple cardioid-shaped EZ that directly represents the capabilities of the
pursuer. They also rely on knowing the pursuer’s parameters exactly, not accounting for the uncertainty inherent in
adversarial environments.

Unlike the simple cardioid-shaped EZs, the researchers in [6] created the concepts of basic engagement zones (BEZ)
that are defined using the properties of differential games [7]. They provided a BEZ between a pursuer and target agent,
where the goal of the pursuer is to capture the target. Assuming the pursuer could instantaneously change its heading
(infinite turn rate), the BEZ model was leveraged to create a path plan, using optimal control theory, around a single
BEZ. In a previous work [8], we extended their work to account for uncertainty in the evader and pursuer parameters
called probabilistic engagement zones (PEZs). We used a linear approximation to propagate uncertainty through the
BEZ equation, then developed a path planning algorithm that uses the linear PEZ approximation as a constraint. Our
work used the same model as [6], assuming the pursuer had an infinite turn-rate. The infinite-turn rate model is an
overly conservative representation of real-world pursuer capabilities.

In recent work, the BEZ was extended to use a Dubin’s vehicle model [9] for the pursuer [10]. Two BEZ variants
were introduced to better represent the pursuer’s motion capabilities: the curve-only BEZ (CBEZ), in which the pursuer
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follows a single arc of constant curvature to intercept the evader, and the curve-straight BEZ (CSBEZ), in which the
pursuer executes a minimum-radius turn (i.e., at maximum turn rate) followed by a straight segment to complete the
interception. Their work provided an analytic solution for the CBEZ and a semi-analytic solution for the CSBEZ. Both
formulations require precise knowledge of pursuer parameters, position, heading, maximum turn-rate, range, and speed.
In this paper, we extend that work to account for uncertain pursuer parameters.

Parallel work in addressing path planning under uncertainty in adversarial settings has explored the use of stochastic
differential games [11–13]. In particular, [12] applies path integral control, a sampling-based technique, to solve
zero-sum stochastic differential games. This approach uses random sampling and requires substantial computational
resources to operate in real time. The researchers in [13] use optimal control to solve the stochastic differential game
for the turn-rate limited pursuer and evader. These methods are primarily reactive, offering strategies for agents after
the engagement has begun. They use a single objective, avoid capture, and do not account for higher-level mission
objectives. Our work provides constraints that can be used in conjunction with higher-level mission goals to ensure
safety while accounting for uncertainty.

In this paper, we extend the prior research on CSBEZ to provide safer trajectory planning for UAVs operating in
adversarial environments. Our contributions include: an analytic solution for that CSBEZ that was originally introduced
in [10]; an extension of the CSBEZ to account for uncertainty; and a path optimization algorithm that accounts for this
uncertainty when generating low-risk trajectories. Specifically, we model uncertainty in the pursuer’s position, heading,
turn rate, range, and velocity through the introduction of the curve-straight probabilistic engagement zone (CSPEZ). We
propose four methods for solving the CSPEZ. Two are based on local approximations: linear CSPEZ (LCSPEZ) and
quadratic CSPEZ (QSPEZ). One is an approximation approach used as a baseline comparative: Monte Carlo CSPEZ
(MCSPEZ). And the last is neural network-based approximation (NNCSPEZ), which employs a multi-layer perceptron
trained on simulated data. We provide a numerical comparison of all these and describe the trade-offs in using each
method. Finally, we also implement a path optimization algorithm that incorporates the CSPEZ approximations as
constraints, ensuring the planned trajectories remain safe under uncertainty in the pursuer parameters.

The remainder of the paper is organized as follows. Section II presents background information and defines the
CSBEZ. In Section III, we extend this model to incorporate uncertainty in the pursuer’s parameters, introducing the
turn-straight probabilistic engagement zone (CSPEZ) and describing the four approximate solution methods. Section IV
details path planning algorithms that leverage the CSPEZ formulations. Experimental results are presented in Section V,
and conclusions are drawn in Section VI.

II. Curve-Straight Basic Engagement Zone (CSBEZ)
The curve straight basic engagement zone (CSBEZ) provides the spatial region an evader needs to avoid capture

by a pursuer that is turn-rate constrained and is executing a curve-straight path. It is defined using known parameters,
specifically the pursuer’s initial position 𝑃, heading 𝜓𝑃 , range 𝑅 (equivalent to maximum flight time 𝑅 = 𝑣𝑃𝑡),
minimum turn radius 𝑎, and the evader’s initial position 𝐸 , speed 𝑣𝐸 , and heading 𝜓𝐸 . To determine if a point is in the
turn-constrained BEZ we need to determine if the pursuer can intercept the evader by traveling less than a distance 𝑅,
provided the evader follows its current heading.

The geometry of the engagement zone can be determined by considering the path of the evader. If the evader travels
along its current heading for the amount of time the pursuer travels its max range it would end at the point 𝐹 = 𝐸 + 𝜈𝑅𝒗𝐸 ,
where 𝜈 = 𝑣𝐸/𝑣𝑃 is the speed ratio and 𝒗𝐸 is a unit vector pointing in the direction of the evader’s heading. We assume
the pursuer takes a curve-straight (CS) path to intercept the evader at 𝐹, which consists of a single arc (either left or
right) of angle 𝜃 with a radius of 𝑎 starting at initial position 𝑃 ending at point 𝐺, then a straight-line path starting at 𝐺
and ending at 𝐹. This path length is 𝜃𝑎 + ∥𝐹 − 𝐺∥2. If this path length is less than 𝑅 the evader is inside the EZ.

To find the path length, we need to determine the point 𝐺 at which the pursuer will leave the “turn” portion of the
path and head straight towards point 𝐹. The point 𝐺 occurs when 𝐹 is along the tangent line of the circle, which can be
found geometrically using the center point of the turn radius. Below we will find this tangent line from the left turn
radius, which we define as 𝐺ℓ . The center point 𝐶ℓ for the left turn radius is

𝐶ℓ (𝑃, 𝜓𝑃 , 𝑎) = 𝑃 + 𝑎

[
− sin(𝜓𝑃)
cos(𝜓𝑃)

]
. (1)
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To aid in finding 𝐺ℓ we define four vectors that are functions of the pursuer’s parameters (𝑃, 𝜓𝑃 , and 𝑎) and 𝐹:

𝒗1,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝐹 − 𝐶ℓ (𝑃, 𝜓𝑃 , 𝑎) (2)
𝒗2,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝐹 − 𝐺ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎)
𝒗3,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝐺ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) − 𝐶ℓ (𝑃, 𝜓𝑃 , 𝑎)
𝒗4,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝑃 − 𝐶ℓ .(𝑃, 𝜓𝑃 , 𝑎)

These provide the vectors (a) from the left turn radius center point to the end of the intercept point, (b) the tangent
line to the intercept point, (c) the left turn radius center to the tangent point, and (d) the left turn radius center to the
pursuer’s initial point. All of these vectors are shown in Figure 1.

We drop the function notation on the vectors for clarity, but for future reference, it will be important to remember
these are functions of the pursuer’s parameters. Of there vectors two are known (𝒗1,ℓ and 𝒗4,ℓ) and two depend on the
tangent point 𝐺ℓ : (𝒗2,ℓ , 𝒗3,ℓ . The vector 𝒗1,ℓ points from the center of the left-turn radius to the goal location. To solve
for the tangent point, we will solve for 𝒗3,ℓ , which is the vector from 𝐶ℓ to 𝐺ℓ . We know that the straight path the
pursuer takes after it stops turning (𝒗2,ℓ) is tangent to the circle. This means 𝒗2,ℓ and 𝒗3,ℓ are perpendicular:

𝒗2,ℓ · 𝒗3,ℓ = 0. (3)

We also note that 𝒗1,ℓ is a linear combination of 𝒗2,ℓ and 𝒗3,ℓ

𝒗2,ℓ = 𝒗1,ℓ − 𝒗3,ℓ . (4)

Substituting this into the orthogonality condition, we obtain a dot product expression involving 𝒗1,ℓ and 𝒗3,ℓ . Since 𝒗3,ℓ
lies on a circle of radius 𝑎, we can enforce the constraint ∥𝒗3,ℓ ∥ = 𝑎. This yields the following relation:

𝒗1,ℓ · 𝒗3,ℓ = 𝑎2. (5)

The vector 𝒗3,ℓ can be decomposed into a component parallel to 𝒗1,ℓ , which contributes to dot product, and a component
perpendicular to 𝒗1,ℓ , which does not. The orthogonal component can be used to ensure ∥𝒗3,ℓ ∥2 = 𝑎. This decomposition
takes the form

𝒗3,ℓ = 𝛼𝒗1,ℓ + 𝛽𝒗⊥1,ℓ , (6)

where 𝒗⊥1,ℓ is a unit vector perpendicular to 𝒗1,ℓ . There are two possible perpendicular vectors, one formed by a 90
degree clockwise rotation and the other by a counter-clockwise rotation. To ensure 𝒗3,ℓ is pointing the correct direction
we choose the clockwise perpendicular vector for 𝒗⊥1,ℓ :

𝒗⊥1,ℓ =

[
0 1
−1 0

]
𝒗1,ℓ

∥𝒗1,ℓ ∥
. (7)

To solve for 𝛼 we use the dot product relationship defined in Equation (5). Because we decomposed 𝒗3,ℓ into a parallel
and orthogonal components, only the parallel component contributes to the dot product:

𝒗1,ℓ · 𝒗3,ℓ = 𝛼𝒗1,ℓ · 𝒗1,ℓ + 𝛽𝒗1,ℓ · 𝒗⊥1,ℓ = 𝛼∥𝒗1,ℓ ∥2
2 = 𝑎2 (8)

which yields

𝛼 =
𝑎2

∥𝒗1,ℓ ∥2
2
. (9)

We will now use the fact that ∥𝒗3,ℓ ∥2 = 𝑎 to solve for the perpendicular component of 𝒗3,ℓ . Squaring both sides gives:

𝑎2 = 𝒗3,ℓ · 𝒗3,ℓ (10)

Substituting the decomposition 𝒗3,ℓ = 𝛼𝒗1,ℓ + 𝛽𝒗⊥1,ℓ , we expand the dot product:

𝑎2 = (𝛼𝒗1,ℓ + 𝛽𝒗⊥1,ℓ) · (𝛼𝒗1,ℓ + 𝛽𝒗⊥1,ℓ) (11)

= 𝛼2𝒗1,ℓ · 𝒗1,ℓ + 2𝛼𝛽𝒗1,ℓ · 𝒗⊥1,ℓ + 𝛽2∥𝒗⊥1,ℓ ∥
2 (12)

3



We now simplify the expression. Since 𝒗1,ℓ and 𝒗⊥1,ℓ are orthogonal, the cross term vanishes, 𝒗1,ℓ · 𝒗⊥1,ℓ = 0 and because
𝒗⊥1,ℓ is a unit vector, we have ∥𝒗⊥1,ℓ ∥

2 = 1. Equation (10) simplifies to:

𝑎2 = 𝛼2∥𝒗1,ℓ ∥2 + 𝛽2 (13)

Substituting in the value of 𝛼 =
𝑎2

∥𝒗1,ℓ ∥2 , we get:

𝑎2 =
𝑎4

∥𝒗1,ℓ ∥2 + 𝛽2. (14)

Solving for 𝛽 yields:

𝛽 =

√︄
𝑎2 − 𝑎4

∥𝒗1,ℓ ∥2 . (15)

Using the parallel (𝛼) and perpendicular (𝛽) components 𝒗3,ℓ is

𝒗3,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) =
𝑎2

∥𝒗1,ℓ ∥2 𝒗1,ℓ +

√︄
𝑎2 − 𝑎4

∥𝒗1,ℓ ∥2

[
0 1
−1 0

]
𝒗1,ℓ

∥𝒗1,ℓ ∥
. (16)

Now that we have the vector starting at the left center point 𝐶ℓ and ending at the tangent point 𝐺ℓ we can solve for the
tangent point as

𝐺ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝐶ℓ + 𝒗3,ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎). (17)

Using the tangent point 𝐺ℓ , we can compute the total length of the pursuer’s curve-straight path to the evader’s projected
position 𝐹. This path consists of two segments: an arc from the pursuer’s initial position 𝑃 to the tangent point 𝐺ℓ ,
followed by a straight-line segment from 𝐺ℓ to 𝐹. To compute the arc length, we first determine the angle swept out by
the pursuer during the turn. This angle is measured from the vector pointing from the center of the left-turn circle to
the pursuer’s initial position, 𝒗4,ℓ , to the vector pointing from the center to the tangent point, 𝒗3,ℓ . Because the turn is
counter-clockwise, we use the two-dimensional cross and dot products to compute the angle via the atan2 function:

𝜃𝑐𝑐𝑤 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = atan2(𝒗4,ℓ × 𝒗3,ℓ , 𝒗4,ℓ · 𝒗3,ℓ). (18)

The path length is the sum of the arc length and the Euclidean distance from the tangent point to the final position

𝐿ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝑎𝜃𝑐𝑐𝑤 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) + ∥𝐺ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎) − 𝐹∥2. (19)

If we need to instead compute the shortest right-straight path, then the only difference is which perpendicular vector we
choose when constructing 𝒗3,𝑟 . We compute the clockwise angle instead of the counterclockwise angle, and choose the
right center point. In the right-straight case

𝐶𝑟 (𝑃, 𝜓𝑃 , 𝑎) = 𝑃 + 𝑎

[
sin(𝜓𝑃)
− cos(𝜓𝑃)

]
, (20)

𝒗3,𝑟 =
𝑎2

∥𝒗1,𝑟 ∥2 𝒗1,𝑟 +

√︄
𝑎2 − 𝑎4

∥𝒗1,𝑟 ∥2

[
0 −1
1 0

]
𝒗1,𝑟

∥𝒗1,𝑟 ∥
, (21)

and
𝜃𝑐𝑤 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = atan2 (−𝒗4,𝑟 × 𝒗3,𝑟 , 𝒗4,𝑟 · 𝒗3,𝑟 ). (22)

Using this angle, we define the shortest right-turn length as

𝐿𝑟 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = 𝑎𝜃𝑐𝑤 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) + ∥𝐺𝑟 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) − 𝐹∥2. (23)

The overall shortest turn-straight length is

𝐿 (𝐹, 𝑃, 𝜓𝑃 , 𝑎) = min(𝐿𝑟 (𝐹, 𝑃, 𝜓𝑃 , 𝑎), 𝐿ℓ (𝐹, 𝑃, 𝜓𝑃 , 𝑎)). (24)
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If F is to the right of the Pursuer’s heading, then the right-straight path will be shorter than the left-straight path. We
define the EZ function as

𝑧(𝐸, 𝜓𝐸 , 𝑃, 𝜓𝑃 , 𝑎, 𝑅, 𝜈) = 𝐿 (𝐸 + 𝜈𝑅𝒗𝜓𝐸
, 𝑃, 𝜓𝑃 , 𝑎) − 𝑅. (25)

The CSBEZ consists of all the points where the minimum turn-straight path length required to reach the evader’s future
position, after the pursuer has traveled its maximum range, is less than the pursuer’s range. The CSBEZ is defined as

Z = {𝐸 |𝑧(𝐸, 𝜓𝐸 , 𝑃, 𝜓𝑃 , 𝑎, 𝑅, 𝜈) ≤ 0}. (26)

Figure 1 shows both the reachable set and the CSBEZ. Also shown are the points and vectors that were used to compute
the left-straight path length.
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Fig. 1 This figures shows the reachable set of the purser in brown. The CSBEZ is shown in green. The evader
starting 𝐸 and final 𝐹 positions are shown as well as the pursuer’s starting position 𝑃, the tangent point 𝐺ℓ where
the pursuer switches from a curved path to a straight one, and the center of the left turn radius 𝐶ℓ . The four
vectors used to find the path length are also shown as 𝒗1,ℓ , 𝒗2,ℓ , 𝒗3,ℓ , and 𝒗4,ℓ .

III. Curve-Straight Probabilistic Engagement Zone (CSPEZ)
The above section found the CSBEZ if the pursuer’s parameters are known. However, in adversarial environments,

enemy parameters are often unknown or uncertain. The CSPEZ finds the probability that the evader is in the true
CSBEZ, when accounting for uncertainty in the pursuer’s parameters. We do this through four uncertainty propagation
techniques that we will describe in the subsequent sections: Monte Carlo CSPEZ (MCCSPEZ), linearized CSPEZ
(LCSPEZ), quadratic CSPEZ (QCSPEZ), and neural network CSPEZ (NNCSPEZ).

For this work, we assume the agent has a prior belief of the pursuer’s parameters represented as a probability
distribution. We combine all the pursuer parameters into a single vector Θ𝑃 = [𝑥𝑃 , 𝑦𝑃 , 𝜓𝑃 , 𝑎, 𝑅, 𝑣𝑃]⊤ and assume a
Gaussian distribution Θ𝑃 ∼ N(𝜇Θ𝑃

, ΣΘ𝑃
) on their distributions with mean 𝜇Θ𝑃

= [𝜇𝑥𝑃 , 𝜇𝑦𝑃 , 𝜇𝜓𝑃
, 𝜇𝑎, 𝜇𝑅, 𝜇𝑣𝑃 ]⊤ and

covariance

ΣΘ𝑃
=



Σ𝑃 02×1 02×1 02×1 02×1

01×2 𝜎2
𝜓𝑃

0 0 0
01×2 0 𝜎2

𝑎 0 0
01×2 0 0 𝜎2

𝑅
0

01×2 0 0 0 𝜎2
𝜓𝑃


. (27)
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Note that the vector of mean values is the mean value of each individual pursuer parameters and Σ𝑃 is the covariance
of the pursuer’s position. The other diagonal elements are the variances of the remaining pursuer parameters. We
assume the 𝑥 and 𝑦 values of the pursuer’s position are correlated, and that there is no correlation between the rest of the
pursuer’s parameters. If there was a correlation between any of these parameters the off-diagonal elements of ΣΘ𝑃

would be non-zero. The probability density function (PDF) of Θ𝑃 is given by

𝑓Θ𝑃
(𝜏) = 1√︁

(2𝜋)6 |ΣΘ𝑃
|

exp

(
− 1

2 (𝜏 − 𝜇Θ𝑃
)⊤ Σ−1

Θ𝑃
(𝜏 − 𝜇Θ𝑃

)
)
. (28)

We also combine the evader’s parameters into a single vector Θ𝐸 = [𝑥𝐸 , 𝑦𝐸 , 𝑣𝐸]⊤. We assume the evader’s
parameters are known for this work, however, extending these methods to account for uncertainty in evader parameters
would be straightforward and interesting.

The CSBEZ, Equation (25), can be written as a function of the pursuer and evader parameters 𝑧(Θ𝑃 ,Θ𝐸). Given a
mean and covariance of the pursuer parameters (𝜇Θ𝑃

, ΣΘ𝑃
), we wish to find the probability that an evader is in the true

CSBEZ. Note that this equation operates under a specific evader configuration Θ𝐸 and the result will change as these
parameters change. Because the evader is in the CSBEZ when 𝑧(Θ𝑃 ,Θ𝐸) ≤ 0, the probability the evader is inside the
CSBEZ is the same as finding the probability of the function being less then zero. This can be solved by integrating the
PDF of Θ𝑃 over the region where 𝑧(Θ𝑃 ,Θ𝐸) ≤ 0,

𝑃CSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑃(𝑧(Θ𝑃 ,Θ𝐸) ≤ 0) =
∫
{𝜏 |𝑧 (𝜏,Θ𝐸 )≤0}

𝑓Θ𝑃
(𝜏)𝑑𝜏. (29)

This integral has no analytic solution because of the coupling between the dimensions of Θ𝑃 and must be approximated.
Note that this integral is evaluated for a specific configuration of the pursuer, characterized by a given mean and
covariance, and for a fixed set of evader parameters. As a result, a new integral must be computed for each unique
combination of pursuer distribution and evader parameters. For example, if this probability is used as a constraint in a
path planning algorithm, the integral must be re-evaluated at multiple points along the path, using the position and
heading defined by the trajectory. In the following sections we present four methods for approximating this integral:
MCCPEZ, LCSPEZ, QCSPEZ, NNCSPEZ.

A. Monte Carlo Probabilistic Engagement Zone (MCCSPEZ)
The MCCSPEZ builds from our previous work in [8], and relies on using Monte Carlo integration to perform

the integral in Equation (29). However, instead of using the simpler, unlimited turn-rate BEZ, we use the CSBEZ
model. MCCSPEZ works by first drawing 𝑁𝑚 random samples from the distribution of pursuer parameters Θ𝑖

𝑃
∼

N(𝜇Θ𝑃
, ΣΘ𝑃

), 𝑖 = 1, . . . , 𝑁𝑚. We then evaluate the CSBEZ function for each random sample, given the evader
parameters, and count the number that are less than zero. The MCCPEZ is then

𝑃MCCSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑃(𝑧(Θ𝑃 ,Θ𝐸) ≤ 0) ≈ 1
𝑁𝑚

𝑁𝑚∑︁
𝑖=0

1
(
−𝑧(Θ𝑖

𝑃 ,Θ𝐸)
)
, (30)

where 1(𝑧) is an indicator function defined as

1(𝑧) =
{

0 𝑧 < 0
1 𝑧 ≥ 0

}
. (31)

As the number of random samples increases, the MCCSPEZ approximation will improve. One downside of the
MCCSPEZ method is the large number of samples needed for accurate approximations. Another is that if a gradient-
based path optimization algorithm is being used, the Jacobian of the MCCSPEZ is needed. However, because of the
flat indicator function, the Jacobian is zero everywhere except for the switching point, and at the switching point it is
undefined.

B. Linearized Probabilistic Engagement Zone (LCSPEZ)
The LCSPEZ method overcomes the large sample size, and Jacobian problems of the MCCSPEZ, at the expense of

accuracy. This method relies on creating a linear model of the CSPEZ funtion and using the linearization to model the
integral in Equation (29) has a well defined solution. A similar method for the simple BEZ was presented in [8].
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We create the linear model using a first-order Taylor series approximation centered around the mean value of the
pursuer parameters. We do this by finding the Jacobians of the CSPEZ function with respect ot the pursuer parameters,

𝑧(Θ𝑃 + 𝜹𝑃 ,Θ𝐸) ≈ 𝑧(Θ𝑃 ,Θ𝐸) + 𝜹𝑃
𝜕𝑧

𝜕Θ𝑃

, (32)

where 𝜕𝑧/𝜕Θ𝑃 is the Jacobian of 𝑧 with respect to Θ𝑃 . The Jacobians can be found analytically or through automatic
differentiation. In this work, we used the JAX automatic differentiation library [14]. Using this model we can compute
the mean and variance of the output of the CSBEZ function as

𝜇𝑧 (𝜇Θ𝑃
,Θ𝐸) = 𝑧(𝜇Θ𝑃

,Θ𝐸) (33)

and
𝜎2
𝑧 (𝜇Θ𝑃

, ΣΘ𝑃
,Θ𝐸) =

𝜕𝑧

𝜕Θ𝑃

(
𝜇Θ𝑃

,Θ𝐸

)
ΣΘ𝑃

𝜕𝑧

𝜕𝚯𝑃

(
𝜇Θ𝑃

,Θ𝐸

)⊤
. (34)

Using this we then find the LCSPEZ probability as

𝑃LCSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑃(𝑧(Θ𝑃 ,Θ𝐸) ≤ 0) ≈ 𝐹 (0; 𝜇𝑧 (𝜇Θ𝑃
,Θ𝐸), 𝜎2 (𝜇Θ𝑃

, ΣΘ𝑃
Θ𝐸)), (35)

where 𝐹 (𝑥; 𝜇, 𝜎2) is the single variable Gaussian cumulative distribution function (CDF). The CDF can be written in
terms of the standard error function as

𝐹 (𝑥; 𝜇, 𝜎2) =
∫ 𝑥

−∞

1
√

2𝜋 𝜎
exp

(
− (𝑡 − 𝜇)2

2𝜎2

)
d𝑡 =

1
2

[
1 + erf

( 𝑥−𝜇
𝜎
√

2

) ]
. (36)

It is important to note that both the mean 𝜇𝑧 (𝜇Θ𝑃
,Θ𝐸) and the variance 𝜎2

𝑧 (𝜇Θ𝑃
,Θ𝐸) depend on the evader parameters

(position, heading, and speed). If the LCSPEZ is used as a constraint within a path planning algorithm, a distinct
mean and variance must be evaluated at points sampled along the trajectory, based on the position and heading defined
by the path. The corresponding LCSPE values can then be computed at each point using the Gaussian CDF. In our
formulation, we treat the pursuer’s parameter distribution as fixed throughout the trajectory. However, if the distribution
were time-varying—such as if the covariance evolved over time or the initial position of the pursuer were dynamic—then
the relevant parameters would also need to be evaluated as functions of time and sampled along the path.

The LCSPEZ has a smaller memory and complexity cost than MCCSPEZ, at the cost of accuracy. Specifically, the
LCSPEZ struggles when the CSPEZ function (Equation (25)) is highly non-linear, contains discontinuities, or when the
Jacobian is zero. LCSPEZ also struggles when there are large levels of uncertainty.

C. Quadratic Probabilistic Engagement Zone (QCSPEZ)
Instead of creating a linear model of the CSBEZ function, QCSPEZ creates a quadratic model. This helps in

situations where the CSBEZ is more nonlinear or where the Jacobian is zero. Instead of creating a first-order Taylor
series, we create a second-order approximation

𝑧(Θ𝑃 + 𝜹𝑃 ,Θ𝐸) ≈ 𝑧(Θ𝑃 ,Θ𝐸) + 𝜹𝑇𝑃
𝜕𝑧

𝜕Θ𝑃

(
Θ𝑃 ,Θ𝐸

)
+ 1

2 𝜹
𝑇
𝑃

𝜕2𝑧

𝜕Θ2
𝑃

(
Θ𝑃 ,Θ𝐸

)
𝜹𝑃 , (37)

where 𝜕2𝑧/𝜕Θ2
𝑃

is the Hessian of the CSPEZ equation with respect to the pursuer parameters. Unlike the LCSPEZ,
there is no analytic solution of a quadratic function of a Gaussian random variable, so we must approximate. We do this
by first finding the mean value of the quadratic approximation

𝜇𝑧 (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑧(𝜇Θ𝑃
,Θ𝐸) + 1

2 tr

(
𝜕2𝑧

𝜕Θ2
𝑃

(𝜇Θ𝑃
,Θ𝐸) ΣΘ𝑃

)
(38)

and variance

𝜎2
𝑧 (𝜇Θ𝑃

, ΣΘ𝑃
,Θ𝐸) =

𝜕𝑧

𝜕Θ𝑃

(𝜇Θ𝑃
,Θ𝐸)ΣΘ𝑃

𝜕𝑧

𝜕Θ𝑃

(Θ𝑃 ,Θ𝐸)⊤ + 2 tr

(
𝜕2𝑧

𝜕Θ2
𝑃

(𝜇Θ𝑃
,Θ𝐸)ΣΘ𝑃

𝜕2𝑧

𝜕Θ2
𝑃

(𝜇Θ𝑃
,Θ𝐸)ΣΘ𝑃

)
. (39)
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Using this mean and variance we then approximate the QCSPEZ probability as

𝑃QCSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑃(𝑧(Θ𝑃 ,Θ𝐸) ≤ 0) ≈ 𝐹 (0; 𝜇𝑧 (𝜇Θ𝑃
,Θ𝐸), 𝜎2 (𝜇Θ𝑃

, ΣΘ𝑃
Θ𝐸)), (40)

where 𝐹 is the single variable Gaussian CDF, defined in Equation (36). Just like the LCSPEZ, there is a unique mean
and variance for a given set of evader parameters (position, heading, speed). If QCSPEZ is used as a constraint for a path
planning algorithm, the mean and variance must be sampled at points along the trajectory. The QCSPEZ probability can
then be found using the Gaussian CDF.

Similar to the LCSPEZ, the QCSPEZ struggles with high nonlinearities and discontinuities in the CSBEZ function.
However, it provides a better approximation than LCSPEZ when the gradient is zero because it incorporates information
from the Hessian.

D. Neural Network Probabilistic Engagement Zone (NNCSPEZ)
Instead of first approximating the CSBEZ equation, NNCSPEZ learns a direct mapping from the pursuer’s parameter

mean and covariance, along with the evader’s parameters, to the probability that the evader lies within the CSBEZ. This
is achieved using a multilayer perceptron (MLP) regressor that predicts the probability from the combined input.

To reduce the input dimensionality and exploit problem symmetries, the MLP input is expressed in a relative frame:
the pursuer is placed at the origin with zero heading, and the evader’s position and heading are defined relative to this
frame. The combined input vector for the MLP is constructed as:

𝑥NN (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) =



𝜇𝑎

𝜇𝑅

𝜇𝑣𝑃

𝜎2
𝑥𝑃

𝜎2
𝑦𝑃

𝜎𝑥𝑃 𝑦𝑃

𝜎2
𝜓𝑃

𝜎2
𝑎

𝜎2
𝑅

𝜎2
𝑣𝑃

𝑥𝐸 − 𝜇𝑥𝑃

𝑦𝐸 − 𝜇𝑦𝑃

𝜓𝐸 − 𝜇𝜓𝑃

𝑣𝐸



∈ R14. (41)

The neural network then learns a function 𝑓𝜙 : R14 → [0, 1], where 𝑓𝜙 (𝑥NN) approximates the probability that the
evader lies within the CSBEZ, given the specified uncertainty and relative configuration.

We implement the probabilistic engagement regressor as a fully connected MLP using the Flax framework [15].
The network receives as input the 14-dimensional feature vector 𝑥NN ∈ R14 and propagates it through four hidden layers
with widths of 512, 256, 256, and 128 neurons, respectively. Each hidden layer applies layer normalization followed by
a sigmoid linear unit (SiLU) activation. Formally, the hidden activations are computed as:

ℎ (0) = 𝑥NN,

ℎ (𝑖) = SiLU
(
LayerNorm(𝑊 (𝑖)ℎ (𝑖−1) + 𝑏 (𝑖) )

)
, 𝑖 = 1, . . . , 4,

(42)

where the weight matrices are
𝑊 (1) ∈ R512×14, 𝑊 (2) ∈ R256×512,

𝑊 (3) ∈ R256×256, 𝑊 (4) ∈ R128×256,
(43)
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with corresponding bias vectors 𝑏 (𝑖) . A final output layer defines the output of the neural network:

𝑓𝜙 (𝑥NN) = 𝜎
(
𝑤 ℎ (4) + 𝑏

)
, (44)

where 𝑤 ∈ R1×128 and 𝑏 ∈ R are the weights and bias of the output layer, and 𝜎(𝑧) = 1/(1 + 𝑒−𝑧) is the sigmoid
function, ensuring that 𝑓𝜙 (𝑥NN) ∈ [0, 1]. The complete set of parameters 𝜙 includes all weight matrices 𝑊 (𝑖) , bias
vectors 𝑏 (𝑖) , the output weights 𝑤, and output bias 𝑏.

To train the network, we generate 𝑁𝑇 samples {𝑥 (𝑖)NN}
𝑁𝑇

𝑖=1 using Latin hypercube sampling [16], drawing from uniform
distributions over the admissible range of each feature. For each sample, we compute the corresponding Monte Carlo
CSPEZ probability 𝑃

(𝑖)
MCCSPEZ , which serves as the ground truth. We then optimize the network parameters 𝜙 using the

Adam optimizer [17] to minimize the root mean square error (RMSE) loss:

L(𝜙) =

√√√
1
𝑁𝑇

𝑁𝑇∑︁
𝑖=1

(
𝑓𝜙 (𝑥 (𝑖)NN) − 𝑃

(𝑖)
MCCSPEZ

)2
. (45)

Using the trained network, the NNCSPEZ is defined as

𝑃NNCSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸) = 𝑓𝜙
(
𝑥NN (𝜇Θ𝑃

, ΣΘ𝑃
,Θ𝐸)

)
. (46)

If trained effectively, the NNCSPEZ will achieve improved accuracy over LCSPEZ and QCSPEZ approximations,
while offering significantly reduced memory requirements compared to MCCSPEZ. An additional advantage is that the
Jacobian of the network output with respect to its inputs is readily available, enabling its integration into gradient-based
path planning algorithms.

IV. Path Planning Using CSPEZ
To illustrate the utility of the CSPEZ formulations, we now present a path optimization framework that incorporates

CSPEZ-based constraints. In contested environments, agents require safe trajectories that avoid potential engagements
while accounting for uncertainty in adversary information. Prior work in [4] and [3] used cardioid-shaped EZs to
compute minimum-time paths that avoid threats. The BEZ formulation in [6] extended this concept to model an
infinite-turn-rate pursuer for conflict-free trajectory planning. In our earlier work [8], we introduced a linearized
probabilistic engagement zone (PEZ) to handle parameter uncertainty in the planning process. Here, we build on that
foundation by integrating the CSPEZ approximations—LCSPEZ, QCSPEZ, and NNCSPEZ—directly as constraints
within the trajectory optimization routine.

We use B-splines to parameterize our trajectories because they are easily differentiable and have local support (sparse
Jacobians) to aid in trajectory optimization. B-splines are parammeterized by a set of control points𝐶 = (𝒄1, 𝒄2, . . . , 𝒄𝑁𝑐

),
where 𝑁𝑐 is the number of control points, and knot points 𝒕𝑘 = (𝑡0 − 𝑘Δ𝑡 , . . . , 𝑡0 −Δ𝑡 , 𝑡0, 𝑡0 +Δ𝑡 , . . . , 𝑡 𝑓 , 𝑡 𝑓 +Δ𝑡 , . . . , 𝑡 𝑓 +
𝑘Δ𝑡 ), where 𝑡0 is the starting time of the trajectory, 𝑡 𝑓 is the final time of the trajectory, 𝑘 is the order of the B-spline,
Δ𝑡 = (𝑡 𝑓 − 𝑡0)/𝑁𝑘 is the time spacing of the knot points, and 𝑁𝑘 is the number of internal knot points. The B-spline
path is then defined as a weighted sum of basis functions where the basis functions are defined using the knot points and
the weights are the control points

𝒑(𝑡) =
𝑁𝑐∑︁
𝑖=1

𝐵𝑖,𝑘 (𝑡)𝒄𝑖 . (47)

The basis functions are defined using the Cox-De-Boor recursive formula [18].
The goal of the path planning algorithm is to find the minimum time trajectory for the evader staring at an initial

position 𝐸0 and ending at a goal location 𝐸 𝑓 . The CSPEZ approximations are used as constraints to ensure the
probability of entering the true CSBEZ is held below a threshold 𝜖 . We also employ kinematic feasibility constraints that
are defined using differential flatness, assuming the evader follows a unicycle kinematic model. The path optimization
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Table 1 Error Metrics For Each Approximation

Approximation RMSE Average Absolute Error Max Error
LCSPEZ 0.01343 0.0655 0.9160
QCSPEZ 0.00792 0.0573 0.8522
NNCSPEZ 2.645e-6 0.0009 0.0448

problem is

𝐶𝑜𝑝𝑡 , 𝑡 𝑓𝑜𝑝𝑡
= argmin

𝐶,𝑡 𝑓

𝑡 𝑓 (48a)

subject to 𝒑(0) = 𝐸0 (48b)
𝒑(𝑡 𝑓 ) = 𝐸 𝑓 (48c)
𝒑( 𝒕𝑠) ∈ D (48d)

𝑃CSPEZ (𝜇Θ𝑃
, ΣΘ𝑃

,Θ𝐸 ( 𝒕𝑠) ≤ 𝜖 (48e)
𝑣( 𝒕𝑠) = 𝑣𝐸 (48f)

𝑢𝑙𝑏 ≤ 𝑢𝐸 ( 𝒕𝑠) ≤ 𝑢𝑢𝑏 (48g)
−𝜅𝑢𝑏 ≤ 𝜅𝐸 ( 𝒕𝑠) ≤ 𝜅𝑢𝑏, (48h)

where 𝑢𝑙𝑏 and 𝑢𝑢𝑏 are the lower and upper turn-rate constraints, 𝜅𝑢𝑏 is the path curvature constraint and 𝑢𝐸 (𝑡) and 𝜅𝐸 (𝑡)
are the turn rate and curvature of the trajectory. The constraints must be discretely sampled, 𝒕𝑠 = {0,Δ𝑠 , 2Δ𝑠 , . . . , 𝑡 𝑓 },
Δ𝑠 = 𝑡 𝑓 /𝑁𝑠 , where 𝑁𝑠 is the number of discrete constraint samples. The first two constraints ensure that the trajectory
starts and ends at the desired point. The third constraint (48d) ensures that the evader remains within the desired
operating region. The next constraint (48e), is the CSPEZ constraint. We alternatively use LCSPEZ, QCSPEZ,
and NNCSPEZ to approximate this constraint. A comparison of these three constraints is shown in Section V. The
next three constraints ensure the trajectory is kinematically feasible for the evader. Assuming the evader follows a
kinematic unicycle model, the velocity is 𝑣(𝑡) = | | ¤𝒑(𝑡) | |2 and is contained to follow a set velocity of 𝑣𝐸 . The turn rate
is 𝑢(𝑡) = ( ¤𝒑(𝑡) × ¥𝒑(𝑡))/| | ¤𝒑(𝑡) | |22 is bounded to fall between 𝑢𝑙𝑏 and 𝑢𝑢𝑏. And finally, the curvature of the evader’s
trajectory is also bounded and can be found as 𝜅(𝑡) = 𝑢(𝑡)/𝑣(𝑡).

We use a gradient-based interior point optimization algorithm called IPOPT [19] to perform the optimization
problem in Equation (48). Because we use a gradient-based optimization algorithm, the Jacobians of the constraints are
needed. We use Jax [14] to perform automatic differentiation to find the Jacobians of the constraints. One reason the
MCCSPEZ approximation is not used in the path planning algorithm is because it has a zero value for its Jacobian due
to the flat indicator function, despite it being the most accurate approximation.

V. Results
In this section, we provide results showing the utility of our CSPEZ formulation. First, we evaluate the accuracy of

the LCSPEZ, QCSPEZ, and NNCSPEZ approximations compared to the MCCSPEZ baseline. Then we show results for
the path planning algorithm when each approximation is used as a constraint.

A. CSPEZ Comparison
To evaluate the accuracy of each approximation, we generate a test set consisting of 𝑁𝑇 = 500,000 samples. Each

sample defines a complete CSPEZ configuration consisting of evader parameters, a pursuer mean, and a pursuer
covariance. These samples are drawn independently from uniform distributions over the admissible ranges of each
parameter. We denote the resulting sets as

{Θ𝑖
𝐸}

𝑁𝑇

𝑖=1 = Θ𝐸 ,

{𝜇𝑖Θ𝑃
}𝑁𝑇

𝑖=1 = 𝜇Θ𝑃
,

{Σ𝑖
Θ𝑃

}𝑁𝑇

𝑖=1 = ΣΘ𝑃
,

(49)
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Fig. 2 A box plot of the absolute error compared to the MCCSPEZ baseline is shown for each model. NNCSPEZ
clearly outperforms the other methods.

where each tuple (𝜇𝑖
Θ𝑃

, Σ𝑖
Θ𝑃

,Θ𝑖
𝐸
) represents a unique configuration over which the CSPEZ probability approximations

are evaluated. These points are generated separately from the points used to train the NNCSPEZ model.
To quantify the accuracy of each approximation method, we evaluate the root mean squared error (RMSE), average

absolute error (AAE), and maximum absolute error (MaxAE) relative to the MCCSPEZ baseline. These metrics are
computed over a test set of 𝑁𝑇 = 500,000 configurations. For each sample 𝑖, let 𝑝𝑖approx = 𝑃APPROX (𝜇𝑖Θ𝑃

, Σ𝑖
Θ𝑃

,Θ𝑖
𝐸
)

denote the predicted CSPEZ probability from a given approximation method—specifically, LCSPEZ (Equation (35)),
QCSPEZ (Equation (40)), or NNCSPEZ (Equation (46)). Let 𝑝𝑖MCCSPEZ = 𝑃MCCSPEZ (𝜇𝑖Θ𝑃

, Σ𝑖
Θ𝑃

,Θ𝑖
𝐸
) denote the

corresponding probability from the MCCSPEZ baseline. The error metrics are then defined as

RMSE =

√√√
1
𝑁𝑇

𝑁𝑇∑︁
𝑖=1

(
𝑝𝑖approx − 𝑝𝑖MCCSPEZ

)2
, (50)

for the root mean square error,

AAE =
1
𝑁𝑇

𝑁𝑇∑︁
𝑖=1

��𝑝𝑖approx − 𝑝𝑖MCCSPEZ
�� , (51)

for the absolute error, and
MaxAE = max

𝑖

��𝑝𝑖approx − 𝑝𝑖MCCSPEZ
�� , (52)

for the maximum error.
RMSE penalizes larger errors more heavily and provides an overall measure of approximation accuracy. AAE

represents the average magnitude of the approximation error, while MaxAE captures the worst-case deviation from the
baseline. The results of these metrics for each method are shown in Table 1. From this table and figure we can see that
NNCSPEZ is the best approximation. However, in many situations the LCSPEZ and QCSPEZ perform adequately.

In addition to the summary statistics, Figure 2 shows the full distribution of absolute errors across all test points,
providing insight into the spread and variability of errors for each approximation method. As can be seen, NNCSPEZ
performs the best overall, however, both LCSPEZ and QCSPEZ perform adequately in a large range of configurations.

To illustrate where the LCSPEZ and QCSPEZ perform well, we show an example scenario where the pursuer’s
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Fig. 3 The level sets of approximated CSPEZ for an example scenario. The pursuer’s heading mean value is
𝜋/2 and the pursuer’s mean position is shown in red. We plot the [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] level sets
of probability. The top left figure is the MCCSPEZ baseline. Top right shows LCSPEZ. Bottom left is QCSPEZ
and bottom left is the NNCSPEZ approximation. Note that visual observation shows that NNCSPEZ provides the
closest approximation to the MCCSPEZ baseline.

parameter mean value is 𝜇Θ𝑃
= [0.0, 0.0, 𝜋/2, 0.2, 1.0, 2.0]⊤ and covariance is

ΣΘ𝑃
=



[
0.025 0.04
0.04 0.1

]
02×1 02×1 02×1 02×1

01×2 0.2 0 0 0
01×2 0 0.005 0 0
01×2 0 0 0.1 0
01×2 0 0 0 0.3


. (53)

We fix the evader heading at 0.0 and evaluate each model on a uniform grid of evader positions in the 𝑥-𝑦 plane. At each
point, the CSPEZ probability is computed using the given approximation method, while holding the pursuer parameters
constant. The resulting probability values are visualized using level sets, where each contour corresponds to a fixed
CSPEZ probability threshold. These level sets are shown in Figure 3.

To assess the accuracy of each approximation, we compute the absolute error between the predicted probability and
the MCCSPEZ baseline at each grid point. These spatial error distributions are shown in Figure 4. In this scenario,
the mean value of the pursuer’s heading points in the positive 𝑦 direction. The largest errors for the LCSPEZ and
QCSPEZ approximations occur in regions near the shifted turn radii of the purser. This corresponds to the cavity in the
deterministic CBEZ from Figure 1. The high error in these regions is due to discontinuities in the CSBEZ surface,
which reduce the accuracy of the linear and quadratic approximations. However, the overall shapes of the probability
contours remains similar accross all methods.

We also show how well each approximation performs under varying levels of uncertainty. To do this, we compute
the trace of each pursuer covariance matrix to represent the overall level of uncertainty for that configuration. The
500,000 test samples are sorted by trace and grouped into uniformly spaced bins. Within each bin, we compute the
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Fig. 4 The absolute error between the three approximations and the MCCSSPEZ baseline for the example
scenario. The pursuer’s heading mean value is 𝜋/2 and the pursuer’s mean position is shown in red. For
reference, the RMSE, average, and maximum absolute error values for this example scenario are also included in
each plot.

Table 2 Path Planning Comparison

LCSPEZ QCSPEZ NNCSPEZ
CSPEZ 𝑡 𝑓 MCCSPEZ Opt Time 𝑡 𝑓 MCCSPEZ Opt Time 𝑡 𝑓 MCCSPEZ Opt Time
0.01 11.76 0.0013 0.5006 12.21 0.0000 0.5943 11.62 0.0087 0.4987
0.05 11.58 0.0213 0.4057 11.81 0.0010 0.5351 11.49 0.0563 0.4277
0.25 11.38 0.1761 0.3453 11.42 0.1117 0.3380 11.34 0.2562 0.4326
0.5 11.29 0.3973 0.2762 11.24 0.5336 0.4150 11.25 0.4986 0.4063

average absolute error between each approximation and the MCCSPEZ baseline. This analysis is shown in Figure 5.
As the level of uncertainty increases, the accuracy of both the LCSPEZ and QCSPEZ deteriorates. This is expected,
since both the linear and quadratic approximations are local to the mean value, and higher uncertainty leads to larger
deviations from the region where the approximation is valid. In contrast, the NNCSPEZ approximation does not exhibit
a strong dependence on uncertainty, as it is trained directly on CSPEZ probability values. However, the NNCSPEZ can
suffer in configurations that are far from its training distribution.

B. Path Planning
To evaluate the effect of each approximation on trajectory optimization, we use the CSPEZ probability as a constraint

in the path planning algorithm described in Section IV. At each discretized point along the B-spline trajectory, the CSPEZ
probability is evaluated using the chosen approximation method. A constraint is enforced such that the probability of
the evader being inside the engagement zone does not exceed a user-specified threshold.

We use the same mean and covariance for the pursuer’s parameters as in Figure 3 to test the CSPEZ approximations
as constraints for the path planning algorithm outlined in Section IV. The evader’s velocity is 1.0, the turn-rate limit
is ±1.0(rad/s) and the curvature limit is 0.2(rad/m). The evader’s starting location is (−4.0,−4.0) and goal (4.0, 4.0).
The B-spline trajectory has 8 control points and has a degree of 3. CSPEZ probability limits of [0.01, 0.05, 0.25, 0.5]
are used.

Figure 6 shows paths planned using LCSPEZ, QCSPEZ, and NNCSPEZ as approximations for the CSPEZ constraint.
For each resulting trajectory, we report three quantities: the final time 𝑡 𝑓 of the trajectory (proportional to path length),
the maximum value of the baseline MCCSPEZ probability along the path (i.e., the least safe point on the trajectory), and
the total optimization time required to compute the solution. These values are shown in Table 2. From the table we see
that NNCSPEZ consistently provided the closest approximation to the MCCSPEZ baseline when used as a constraint.
Both LCSPEZ and QCSPEZ result in more conservative paths, reflected in lower maximum MCCSPEZ values along
the trajectory. For higher CSPEZ constraints, LCSPEZ also tends to result in shorter optimization times compared to
NNCSPEZ.
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Fig. 5 The absolute error between the MCCSPEZ baseline and other approximation methods versus the trace
of the pursuer parameter covariance. This shows that as the amount of uncertainty increases both the LCSPEZ
and QCSPEZ approximations deteriorate as the NNCSPEZ stays accurate.
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Fig. 6 The left plot shows the paths planned using the LCSPEZ approximation as the CSPEZ constraint. Four
different CSPEZ constraint values are shown [0.01, 0.05, 0.25, 0.5]. Mahalonobis distance values of one two and
three are shown in red. The middle plot shows the paths planned using the QCSPEZ as the approximation and
the right figure shows NNCSPEZ as the approximation.

So far, all results have compared different CSPEZ approximations as constraints for the path planning algorithm.
To evaluate the benefit of using probabilistic constraints over a deterministic one, we compare against the CSBEZ
formulation. The CSBEZ, being deterministic, ignores uncertainty in the pursuer’s parameters, assuming the mean
values are exact. In contrast, the CSPEZ approximations incorporate uncertainty in the pursuer’s parameters, allowing
for a tunable safety threshold. Notably, a CSPEZ constraint of 0.5 using the LCSPEZ approximation corresponds
to enforcing that the evader lies outside the deterministic CSBEZ defined by the pursuer’s mean parameters (i.e.,
𝑧(𝜇Θ𝑃

,Θ𝐸) ≤ 0, Equation (25)). From Table 2, we observe that using the CSPEZ approximations instead of the
deterministic CSBEZ results in significantly safer paths, with the added flexibility of tuning the constraint to balance
risk and performance. This demonstrates that incorporating probabilistic constraints can significantly increase path
safety by explicitly accounting for uncertainty, while incurring only a modest increase in path length.

VI. Conclusion
In this work, we introduced a framework for modeling probabilistic engagement zones to support path planning in

adversarial environments with uncertainty. Our first contribution was an analytic solution to the Curve-Straight Basic
Engagement Zone (CSBEZ), extending previous geometric models. We then proposed the Curve-Straight Probabilistic
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Engagement Zone (CSPEZ), which estimates the probability of an evader being inside the true CSBEZ when the
pursuer’s parameters are uncertain.

To approximate the CSPEZ probability, we presented four methods: a Monte Carlo baseline (MCCSPEZ), a
linearized model (LCSPEZ), a quadratic model (QCSPEZ), and a neural network model (NNCSPEZ). MCCSPEZ
provides accurate results but is too slow and non-smooth for use in optimization. LCSPEZ and QCSPEZ offer analytic,
differentiable approximations that require no pretraining. NNCSPEZ achieves the highest accuracy but depends on
representative training data near the input configuration.

We showed how each method can be used as a constraint in trajectory optimization, enabling planners to generate
paths that explicitly account for risk. This supports decision-making in uncertain, contested regions where deterministic
methods may be unsafe. Our results showed that NNCSPEZ enabled the shortest, safest paths, while LCSPEZ and
QCSPEZ remain useful when training data is unavailable.

This study focused on two-dimensional scenarios to enable tractable analysis, training, and visualization. However,
the underlying framework can extend to 3D vehicle dynamics and more realistic engagement models. Future work will
address uncertainty in the evader’s state, incorporate multiple threats, and develop trajectory initialization strategies to
improve convergence.
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