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Abstract— In this work, we present linearized probabilistic
weapon engagement zones (linearized PEZ), which provide
a method to prevent agents from engaging in a pursuer-
evasion differential game while accounting for uncertainty in
the parameters of the game. This type of differential game is
commonly used to model adversarial environments, where the
parameters of the adversary (pursuer), such as initial positions
and range, are often unknown or uncertain. Additionally,
with the increasing potential of GPS jamming in modern
warfare, even friendly (evader) parameters, such as position and
orientation, can be uncertain. We demonstrate that linearized
PEZ effectively approximates the true engagement zone distri-
bution found using a Monte Carlo method. Using linearized
PEZ, we develop a path optimization algorithm that plans
safe trajectories while addressing this uncertainty. Numerical
simulations are presented to demonstrate the effectiveness of
our approach.

I. INTRODUCTION

Many navigation missions require traversing contested or
adversarial environments, where the risk of exposure to
threats is high. For example, a reconnaissance unmanned
aerial vehicle (UAV) may need to navigate through enemy
territory while minimizing its risk of detection or attack.
Planning safe and efficient paths in such environments is
crucial for mission success [1], [2]. Ideally, these paths would
allow the UAV to traverse the region without the need for
sudden evasive maneuvers. However, contested environments
often involve adversaries with unknown or uncertain param-
eters, making the task more challenging. Effective planning
algorithms must account for this uncertainty to ensure that
the trajectories are safe.

We model our adversarial environments using engagement
zones (EZ). EZs are regions that an agent cannot occupy if
they want to avoid being neutralized by an enemy [3]. They
are defined using the parameters of the enemy agents in the
environment; adversary’s speed, range, capture radius, etc.
Past research has used cardiod shapes to define deterministic
EZs [3]–[5]. In [3], the authors provide an optimal control
strategy to guide a Dubins vehicle around a single cardoid-
shaped EZ. Their work assumes that the parameters of the
EZ are known (the size and location of the EZ), and they do
not account for the uncertainty inherent in adversarial envi-
ronments. Their work was extended to account for multiple
deterministic EZs [4], and dynamic EZs, where the origin
of the EZ changes over time [5]. All these works depend
on knowing the parameters of the EZ precisely and do not
account for uncertainty.
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Instead of using cardiod-shaped EZs, recent research has
defined basic EZs (BEZs) using the geometric properties of
differential games [6], which are frequently used to model
adversarial threats [7]. A differential game is described by a
set of differential equations and objectives for each player in
the game. BEZs defined using differential games are more
meaningful than cardiod-shaped EZs because they are tied to
a specific model and represent the capabilities of the players
in the game.

In this work, we consider the pursuit-evasion differential
game, where the goal of the evader is to avoid capture by
the pursuer. This game is described in detail in [8]. The
authors in [6] use geometric properties of the pursuit-evasion
differential game to define a BEZ: a zone where, if the
evader continues on its current heading, it will be neutralized
by the pursuer. Using the BEZ as a constraint for path
planning prevents the evader from entering a region where
they would need to engage in a pursuit-evader differential
game. This definition of a BEZ depends on knowing the
starting location of the pursuer, as well as its maximum
speed, range, and capture radius. It also assumes that the
evader’s speed, heading, and global location are known. In
contested environments, evaders often do not have access
to this information and may instead have estimates or prior
beliefs about these parameters. We develop linearized PEZ
using the BEZ model to account for the uncertainty in these
estimates or beliefs.

Other research on path planning in uncertain adver-
sarial environments includes using stochastic differential
games [9], [10]. The authors in [10] use path integral con-
trol, a sampling-based method, to solve zero-sum stochastic
differential games. However, this work relies on a random
sampling method that requires high-performance parallel
computing to run in real time. In addition, these works guide
the players of the game on what to do when the game has
already started. BEZs provide the evader with information
on where to navigate to avoid conflict altogether.

Instead of modeling the adversarial environment using
differential games, researchers in [11] and [12] use radar
probability of detection. They used a linearization technique
to account for uncertainty in enemy radar’s global location
and power parameters. They then used the resulting model
to plan safe paths that avoid radar detection. Their method
only applies to avoiding detection by a radar system. Our
approach uses the evader/pursuer differential game and could
potentially be applied to a wider range of adversarial envi-
ronments.

In this work, we extend the results of [6] by incor-
porating uncertainty in the location and headings of the



evader and the location, range, and capture radius of the
pursuer. This is achieved through a linear sensitivity analysis
of the engagement zone (EZ) equations presented in [6],
focusing specifically on the case of a fast pursuer (where the
speed of the pursuer is greater than the evader’s speed). We
provide a random sampling-based Monte Carlo PEZ method
that accounts for uncertainty by generating many random
samples. This serves as a baseline non-linear comparison for
our linearized PEZ approach. Additionally, we present a B-
Spline-based path planning algorithm that can incorporate the
pursuer’s and evader’s uncertain parameters and provide safe
paths for the evader to follow. This path-planning approach
and the application of linearized PEZs are validated using
Monte Carlo (MC) simulations.

The contributions of this paper are summarized as follows:
1) We provide a method to prevent agents from engaging

in differential games while accounting for uncertainty
in the parameters of a pursuit-evader differential game
by linearizing the BEZ equations to create linearized
PEZs.

2) We evaluate the PEZs using a Monte Carlo non-linear
PEZ comparison.

3) We present a path planning algorithm that uses PEZs
to find paths for the agent with a low probability of
being neutralized, and use Monte Carlo simulations to
validate the safety of our planning algorithms.

The remainder of the paper proceeds as follows. Background
information on BEZs is found in Section II. Section III
outlines our method for finding the linearized PEZs. Sec-
tion IV shows how linearized PEZ can be used to plan
safe trajectories. Simulation results are shown in Section V.
Finally, conclusions are given in Section VI.

II. BACKGROUND

BEZs are defined analytically using differential games.
Because our algorithm operates from the perspective of the
evader, we will refer to the evader as the agent. For the
evader/pursuer case, the differential game is defined with
dynamics for the agent and pursuer as

ẋ =

[
ẋP
ẋA

]
=


ẋP
ẏP
ẋA
ẏA

 =


vP cosψP
vP sinψP
vA cosψA
vA sinψA

 ,x(0) = [xP (0)xA(0)

]
,

(1)
where xP is the pursuer’s location, xA is the agent’s
(evader’s) location, vP is the pursuer’s speed, vA is the
agent’s speed, ψP is the pursuer’s heading and ψA is the
agent’s heading. The agent is neutralized if it comes within
a capture radius r of the pursuer. The pursuer is considered
range-limited (i.e., fuel/time limit), with maximum range R.
Additionally, we define the speed ratio between the agent
and the pursuer as ν = vA/vP . This differential game is
depicted in Figure 1.

The BEZ is defined as the region where the agent will
be neutralized by the pursuer on a collision course if the
agent doesn’t deviate from it current trajectory or try to evade
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Fig. 1. This figure shows the evader/pursuer differential game. The pursuer
(red) starts at the origin and has a finite range R. It neutralizes the agent if
the agent/evader (blue) comes inside its capture radius r. The aspect angle ξ,
is the angle between the heading of the agent and the line of sight direction
of the pursuer.

the pursuer. This is more conservative than win/lose regions
defined using solutions to the differential games as it does
not require the agent to make evasive maneuvers to avoid
capture. BEZs define a method for preventing the evader
from ever entering a region where it would engage in the
game.

The BEZ can be defined using the parameters of the
differential game as [6]

Z = {xA : ∥xA − xP (0)∥2 ≤ ρ(ξ, ν,R, r)}. (2)

The function ρ(ξ, ν,R, r) can be found geometrically using
the law of cosines for the case where vP > vA. For this fast
pursuer ν is [6]

ρ(ξ, ν,R, r) = νr

(
cos(ξ) +

√
cos2(ξ)− 1 +

(R+ r)2

ν2R2

)
,

(3)
where ξ is the aspect angle between the agent’s heading and
the pursuer defined as

ξ(xA,xP (0)) = ψA − arctan

(
yP (0)− yA
xP (0)− xA

)
. (4)

The BEZ defines a region where the agent will be caught if
it keeps its same heading and, therefore, changes depending
on the heading of the agent. This means that an agent’s
engagement zone is constantly evolving as an agent moves
along its trajectory. Using BEZs, as defined above, allows
path-planning algorithms to find safe trajectories that guar-
antee they will not be captured and do not require evasive
maneuvers.

III. PROBABILISTIC WEAPON ENGAGEMENT ZONES

The BEZ model requires the agent to know its own param-
eters: position, heading, and speed, as well as the pursuer’s
parameters: position, speed, range, and capture radius. In



contested environments, GPS can be denied, making it diffi-
cult for the agent to precisely determine its own parameters.
Enemy parameters are often not known precisely; however,
the agent may have prior beliefs or estimates of both its own
and the enemy’s parameters. In this work, we assume that
these beliefs take the form of probability distributions.

In this section, we analyze the BEZ model by accounting
for uncertainty in both the agent’s and pursuer’s parameters.
We accomplish this through linear covariance analysis and
Monte Carlo methods. However, we do not account for
the uncertainty in the speed of the agent and the pursuer
because this can change if we identify a pursuer as fast
ν > 1 or slow ν < 1. The authors in [6] show that the
shape of the BEZ differs drastically between the fast and
slow pursuer cases. Since we treat the unknown parameters
as Gaussian random variables, incorporating speeds would
introduce ambiguity regarding whether the scenario involves
a fast or slow pursuer, i.e., there would be a non-zero
probability (due to the infinite tails of Gaussian distributions)
that the pursuer’s speed is slower than the agent’s, even if
the mean pursuer speed is higher. For this reason, we do not
evaluate the uncertainty in the speeds, and leave this as an
item of future work.

We represent the agent’s parameters as ΘA(t) =
[xA(t), ψA(t)]

⊤. Because the agent is moving, its parameters
may be a function of time; however, the PEZ is only eval-
uated at the current moment in time and will change when
the position or heading of the agent changes. The pursuer’s
parameters are ΘP = [xP (0), R, r]

⊤. We do not include the
pursuer’s heading ψP in the parameters because it is not a
part of the BEZ equation (the pursuer’s heading is assumed to
be the optimal collision course heading; this means the BEZ
is based off the worst-case heading and therefore provides
a conservative safety zone). We assume the parameters are
normally distributed ΘA(t) ∼ N (µΘA

(t),ΣΘA
(t)), with

ΣΘA
(t) =

[
ΣxA

(t) 02×1

01×2 σ2
ψA

(t)

]
, (5)

where ΣxA
(t) is the covariance of the agent’s position,

σ2
ψA

(t) is the variance of the agent’s heading, and ΣΘA
(t) ∈

R3×3. If there were a covariance between the agent’s position
xA and heading ψA, the zero matrices on the off-diagonal
would be replaced with those values.

Similarly, we assume the pursuer’s parameters are nor-
mally distributed ΘP ∼ N (µΘP

,ΣΘP
), with

ΣΘP
=

ΣxP (0) 02×1 02×1

01×2 σ2
R 02×1

01×2 01×2 σ2
r

 , (6)

where ΣxP (0) is the covariance of the agent’s belief of
the pursuer’s starting location, σ2

R is the variance of the
agent’s belief of the range of the pursuer, σ2

r is the variance
of the agent’s belief of the pursuer’s capture radius, and
ΣΘP

∈ R4×4. For this work, we assume that these distri-
butions do not change over time, but incorporating changing
distributions into this formulation would be a straightforward
addition.

To assist with our analysis we define an engagement zone
function z(ΘA(t),ΘP , ν) as

z(ΘA(t),ΘP , ν) = ∥xP (0)− xA∥2 − ρ(ξ, ν,R, r). (7)

This function is a combination of the distance and Equa-
tion (3). When z(ΘA(t),ΘP , ν) ≤ 0 the agent is inside the
engagement zone.

Using these equations, we next present the linear covari-
ance method in Section III-A and the MC method in Sec-
tion III-B. The MC PEZ method generates random samples
of the parameter distributions of the pursuer and the agent
and propagates them through the engagement zone function
(Equation (7)) to account for uncertainty.

A. Linearized Probabilistic Engagement Zone

To find the linearized PEZ we create a linear approxima-
tion of the engagement zone function, Equation (7) using
a first-order Taylor approximation. To do this, we find the
Jacobians of z(ΘA,ΘP , ν) with respect to ΘA and ΘP . The
first-order approximation is given as

z(ΘA + δA,ΘP + δP , ν) ≈

z(ΘA,ΘP , ν) + δA
∂z

∂ΘA
+ δP

∂z

∂ΘP
, (8)

where ∂z/∂ΘA is the Jacobian of z with respect to ΘA

and ∂z/∂ΘP is the Jacobian of z with respect to ΘP . The
Jacobians can be found analytically or through automatic
differentiation. In this work, we used the JAX automatic
differentiation library [13]. We treat δA and δP as Gaussian
random variables with covariances ΣΘA

and ΣΘP
, respec-

tively. Using this, we can find the approximate mean and
covariance of z(ΘA+ δA,ΘP + δP , ν). This yields a mean
of

µz(µΘA
, µΘP

, ν) = z(µΘA
, µΘP

, ν), (9)

and a covariance of

Σz(µΘA
, µΘP

, ν,ΣΘA
,ΣΘP

) =

∂z

∂ΘA
ΣΘA

∂z

∂ΘA

⊤
+

∂z

∂ΘP
ΣΘP

∂z

∂ΘP

⊤
. (10)

Using this approximate distribution, we can now find an
approximate probability that the agent is inside the true EZ.
This is found as

P (z(ΘA,ΘP , ν) ≤ 0), (11)

where

z(ΘA,ΘP , ν) ∼̇ N (µz,Σz). (12)

This probability can be easily found numerically using the
CDF of the multivariate Gaussian distribution. There is a
different distribution (µf ,Σf ) for each point in which the
PEZ is evaluated (for each xA).



B. Monte Carlo Probabilistic Engagement Zone

To evaluate the accuracy of the linearized PEZ, we provide
a Monte Carlo (MC) method for comparison. The MC PEZ
method relies on random sampling and results in a nonlinear
approximation of the PEZ that is more accurate. We draw
Nm random samples from the distribution of agent param-
eters ΘA = {Θi

A} ∼ N (µΘA
,ΣΘA

)∀i∈{1,...,Nm} and Nm
samples from the distribution of pursuer parameters ΘP =
{Θi

P } ∼ N (µΘP
,ΣΘP

)∀i∈{1,...,Nm}. We then propagate the
random samples through z(ΘA,ΘP , ν) to give

Z = {z(Θi
A,Θ

i
P , ν)}∀Θi

A∈ΘA,Θi
P∈ΘP

. (13)

We can approximate P (z(ΘA,ΘP , ν) ≤ 0) by counting the
number of elements of Z that are less then zero,

P (z(ΘA,ΘP , ν) ≤ 0) ≈ 1

Nm

∑
zi∈Z

1(−zi) (14)

where 1(z) is an indicator function defined as

1(z) =

{
0 z < 0
1 z ≥ 0

}
. (15)

This counts the number of samples of Z less than 0 and then
divides by the number of samples, approximating the true
probability of being inside the EZ, given the distributions of
the agent and pursuer parameters. As the number of samples
Nm increases, this approximation improves. We use the MC
PEZ as a comparison for the linearized PEZ. In practice,
especially for path planning, evaluating the MC PEZ is too
expensive for real-time performance.

IV. PATH OPTIMIZATION USING PEZ
To illustrate the usefulness of the linearized PEZ formu-

lation, we now present the path optimization approach using
linearized PEZ. When traversing contested environments,
agents need safe paths that avoid adversaries while account-
ing for uncertainty in their self-knowledge and adversarial
knowledge. Past work in [4] and [3] used a different EZ
definition to plan safe minimum-time trajectories around
EZs. The authors in [6] use the BEZ formulation to plan
conflict-free paths around the pursuers, paths that do not
require the agent to take evasive maneuvers to avoid being
captured. In this work, we present a similar path planning
scheme; however, we use linearized PEZs, accounting for
uncertainty in the pursuer’s parameters.

Due to their ability to efficiently parameterize paths, we
use B-splines as our representation. B-splines are defined by
a list of control points C = (c1, c2, . . . , cNc), where Nc
is the number of control points, and knot points tk = (t0 −
k∆t, . . . , t0−∆t, t0, t0+∆t, . . . , tf , tf+∆t, . . . , tf+k∆t),
where t0 is the starting time of the trajectory, tf is the final
time of the trajectory, k is the order of the B-spline, ∆t =
(tf − t0)/Nk is the time spacing of the knot points, and Nk
is the number of internal knot points. Using the knot points
to define basis functions, a B-spline trajectory is defined as

p(t) =

Nc∑
i=1

Bi,k(t)ci, (16)

where the basis function Bi,k(t) are defined using the Cox-
de Boor recursive formula shown in [14]. B-splines are
useful for path planning because the basis functions have
finite support (changing control points at the beginning of
the spline does not effect the end), and they can be easily
differentiated.

The goal of the path planner is to find the minimum time
trajectory that starts at xA(0) and ends at xA(tf ), while

also using the linearized PEZ to ensure that the probability
of the agent entering the EZ is below a threshold. We also

include constraints that ensure the path is kinematically
feasible, similar to our previous work [15]. This yields an

optimization problem of

Copt, tfopt = argmin
C,tf

tf (17a)

subject to p(0) = xA(0) (17b)
p(tf ) = xA(tf ) (17c)

p(ts) ∈ D (17d)
P (z(ΘA(ts),ΘP , ν) ≤ 0) ≤ ϵ (17e)

v(ts) = vA (17f)
ulb ≤ uA(ts) ≤ uub (17g)

−κub ≤ κA(ts) ≤ κub, (17h)

where ulb and uub are the lower and upper turn-rate con-
straints, κub is the path curvature constraint and uA(t)
and κA(t) are the turn rate and curvature of the trajec-
tory. The constraints must be discretely sampled, ts =
{0,∆s, 2∆s, . . . , tf}, ∆s = tf/Ns, where Ns is the number
of discrete constraint samples. The first and second con-
straints (Equations (17b) and (17c)) ensure that the path
starts at the agent’s initial position and finishes at the goal.
The next constraint (Equation (17d)) ensures that the agent
remains within the operating region D. Equation (17e) is
the PEZ constraint (17e) that ensures that the approximate
probability of being inside the true engagement zone remains
below a threshold ϵ. The next three constraints (Equa-
tions (17f)- (17h)) ensure kinematic feasibility in velocity,
turn rate, and curvature. The velocity of the trajectory can
be found as v(t) = ||ṗ(t)||2. The turn rate is u(t) =
(ṗ(t)× p̈(t))/||ṗ(t)||22. The final kinematic constraint is the
curvature and can be found as κ(t) = u(t)/v(t).

We use a gradient-based interior point optimization al-
gorithm called IPOPT [16]. Because it is a gradient-based
method, the gradient of the objective function as well as
Jacobians of the constraints are needed. We use the JAX
automatic differentiation library to find this gradient and
Jacobians [13].

V. RESULTS

In this section, we present results demonstrating the ef-
fectiveness of using the linearized PEZ in our path-planning
algorithm. To validate the linearized PEZ, we first compare
it with Monte Carlo (MC) PEZs. Subsequently, we provide
results for path planning that utilize linearized PEZs and
compare these results with those obtained using deterministic
BEZs.
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Fig. 2. This figure shows the linearized and MC PEZ for 4 cases. The black circles show the pursuer’s range. The red circles show the deterministic
BEZ and the colored circles show the level sets of probability of being inside the true EZ for both the linearized PEZ and the MC PEZ. The red point is
the mean value of the initial position of the pursuer (xP0

). The 3-sigma bounds of the pursuer’s initial location are shown in the filled red circles.

TABLE I
RMSE BETWEEN LINEARIZED PEZ AND MONTE CARLO PEZ FOR DIFFERENT UNCERTAINTY LEVELS.

µxA ΣxA µψA
σ2
ψA

µxP ΣxP µR σ2
R µr σ2

r vP vA RMSE

Case 1 -
[
0.0 0.0
0.0 0.0

]
- 0

[
0.0
0.0

] [
0.2 0.0
0.0 0.2

]
1.0 0.0 0.1 0.0 1.0 0.5 0.0474

Case 2 -
[
0.0 0.0
0.0 0.0

]
- 0

[
0.0
0.0

] [
0.0 0.0
0.0 0.0

]
1.0 0.2 0.1 0.0 1.0 0.5 0.0480

Case 3 -
[
0.0 0.0
0.0 0.0

]
- 0

[
0.0
0.0

] [
0.0 0.0
0.0 0.0

]
1.0 0.0 0.1 0.02 1.0 0.5 0.0482

Case 4 -
[
0.0 0.0
0.0 0.0

]
- 0

[
0.0
0.0

] [
0.2 0.0
0.0 0.2

]
1.0 0.2 0.1 0.02 1.0 0.5 0.0468

Case 5 -
[
0.2 0.0
0.0 0.2

]
- 0

[
0.0
0.0

] [
0.0 0.0
0.0 0.0

]
1.0 0.0 0.1 0.00 1.0 0.5 0.0472

Case 6 -
[
0.0 0.0
0.0 0.0

]
- 0.2

[
0.0
0.0

] [
0.0 0.0
0.0 0.0

]
1.0 0.0 0.1 0.00 1.0 0.5 0.0552

Case 7 -
[
0.2 0.0
0.0 0.2

]
- 0.2

[
0.0
0.0

] [
0.2 0.0
0.0 0.2

]
1.0 0.2 0.1 0.02 1.0 0.5 0.0793

Table I shows seven different cases with varying parame-
ters that we used to test the linearized PEZ. Our values are
shown as unitless because this method can be used for a
variety of vehicles with arbitrary speeds, ranges, and capture
radii. The ratio of these parameters is what matters. So,
showing the cases where ν = 0.5, we represent situations
where the pursuer is twice as fast as the agent. The first four
cases show uncertainty in the pursuer parameters ΘP . Cases
1-3 isolate each parameter, and Case 4 shows the combined
effect. Cases 5 and 6 show uncertainty only in the agent’s
parameters ΘA. And the final case shows uncertainty in both
agent and pursuer parameters. We report the RMSE between
the linearized PEZ and the MC PEZ. This is computed
by evaluating the linearized PEZ and the MC PEZ on a
grid of points and then computing the RMSE between the
values at those points. From this comparison, we see that the
agent’s heading (Case 6) ψA has the greatest effect on the

accuracy of the linearized PEZ. The RMSE is reasonable for
all cases showing that the linearized PEZ model is a useful
approximation.

Figure 2 shows the linearized PEZ and MC PEZ for the
first four cases. The levels of the probability of being inside
the true BEZ (P (f(ΘA,ΘP , ν) ≤ 0)) are shown. From the
figure, it is apparent that the linearized PEZ is approximately
the same as the MC PEZ. The deterministic BEZ is colored
red. The BEZ corresponds to the 50% level of the linearized
PEZ.

Next, we show simulation results for the PEZ path planner.
We evaluate the path planner for the first four cases as
shown in Table I. We only show the cases where the agent’s
parameters are known precisely and where the pursuer’s
parameters are uncertain. Our method would work in cases
where there is uncertainty in the agent’s parameters; however,
to realistically apply this situation, the agent’s parameter
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Fig. 3. Six different paths are shown. The mean value of the pursuer’s location is shown as a red point, and 3-sigma bounds are shown as solid red
circles. The black circle shows the range of the pursuer. For a-e, the color of the path indicates the linearized PEZ at that point on the path. For f, the
color shows z the BEZ constraint, the closer to 0 the closer the trajectory is to being inside the BEZ. The lower the PEZ limit, the further the path has to
go to maintain the constraint. These paths were all planned using the parameters in Case 4 and different linearized PEZ thresholds.

uncertainty would need to vary as the agent moves. An
extended Kalman filter (EKF) could be used to track the
agent’s parameters and their uncertainty as was done in [11].
However, integrating an EKF for agent state estimation and
our path planner is beyond the scope of this conference paper,
and we leave it for future work.

For all cases, the agent started at xA(0) = [−4,−4]⊤ and
had a goal of xA(tf ) = [4, 4]⊤. We planned the agent’s path
using a third-order spline k = 3 with Nc = 7 and Ns = 100.

Figure 3 shows the optimized trajectories using the formu-
lation in Equation (17) and the parameters in Case 4 from
Table I. The figure shows five planned paths using the PEZ
constraint and one planned path using the BEZ constraint.
The lower the value of the PEZ constraint ϵ the wider the path
must deviate to avoid the pursuer. The BEZ constrained path
(deterministic) takes the tightest route. Because the mean
value of z corresponds to the BEZ constraint, using the BEZ
constraint is equivalent to using ϵ = 0.5. We only show
values of ϵ ≤ 0.5, because values greater than 0.5 would be
equivalent to planning paths that are more likely than not to
be in the true EZ. For example, a PEZ limit of ϵ = 0.01
corresponds to a constraint that the path must not exceed a
1% probability of being within the true EZ.

Table II shows the results for different planned paths using
the parameters shown in Cases 1-4 of Table I. The Case 4
paths in this table correspond to the planned paths shown
in Figure 3. The table shows the linearized PEZ threshold,
the planned path time tf , and the MC probability that the
path violates the true BEZ. To compute the MC probability
of the path violating the true BEZ, a path was planned for
each threshold. After the path was planned, Nm samples

were drawn from the distribution of pursuer parameters ΘP .
Using the sampled parameter, we evaluated points along
the trajectory to see if they violated the deterministic BEZ
created from each sample. The number of these violations
was counted and then divided by the total number of MC
runs. This provides a metric to show how well the linearized
PEZ performed. Ideally, if the linearization exactly approx-
imated the true BEZ, the linearized PEZ threshold and MC
probability would be the same. However, from Table II,
we see that there is some disparity due to linearization
errors. The difference between the linearized PEZ and the
MC probability is small. In general, Case 4 shows the
greatest disparity between the linearized PEZ and the MC
evaluation. However, the linearized PEZ threshold and the
MC evaluation match very closely.

These results show the usefulness of the linearized PEZ.
For a small increase in total path time (22.69 versus 24.89
seconds), there is a significant increase in safety (ranging
from a 50.65% chance of being inside the true BEZ to around
a 1.33% chance). When there is uncertainty in the parameters
of the purser, the linearized PEZ formulation can be favorable
to account for this uncertainty and maintain safe paths.

VI. CONCLUSION

In this work, we present a method that extends past work
on EZs to account for uncertainty in pursuer parameters
and agent (evader) parameters. We specifically account for
uncertainty in the location, range, and capture radius of
the pursuer and the position and heading of the agent in
the evader/pursuer differential game. We do this through a
linearized PEZ method that linearly approximates the BEZ



TABLE II
THIS TABLE SHOWS THE PATH LENGTH IN SECONDS AND THE MC PROBABILITY THAT THE PLANNED PATH VIOLATES THE TRUE BEZ.

PEZ Thresh (ϵ) Case 1 Case 2 Case 3 Case 4
tf MC prob tf MC prob tf MC prob tf MC prob

0.01 24.05 0.0122 24.03 0.0114 23.04 0.0093 24.89 0.0133
0.05 23.57 0.0582 23.56 0.0533 22.92 0.0507 24.08 0.0562
0.1 23.34 0.1082 23.34 0.1024 22.86 0.0981 23.70 0.1081
0.2 23.09 0.2050 23.09 0.2022 22.80 0.2018 23.30 0.2138
0.3 22.92 0.3089 22.92 0.3118 22.76 0.3045 23.04 0.3072
0.4 22.78 0.4191 22.80 0.4030 22.72 0.4019 22.84 0.4100

Deterministic 22.69 0.5087 22.69 0.5006 22.69 0.4987 22.69 0.5065

equations and propagates the uncertainty through them. We
provide an MC PEZ comparison that is computationally
more expensive but better approximates the true PEZ. This
comparison showed that the linearized PEZ is a sufficient
approximation of the MC PEZ. We also provide a method
for using the linearized PEZ to plan safe paths that show
a significant improvement in safety when compared to a
standard BEZ under uncertainty in the pursuer’s parameters.

Future work includes improving the linearized approxi-
mation; this could be done using improved uncertainty prop-
agation, such as with an unscented transform. Uncertainty
in the speed of the agent and pursuer also needs to be
taken into account. Path planning with uncertainty in the
agent’s position and heading also provides an interesting area
of research, especially considering the prevalence of GPS-
denied regions in contested environments.
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