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Abstract—This paper addresses the challenge of navigating
unmanned aerial vehicles (UAV) in contested environments by
introducing a cooperative multi-agent framework that increases
the likelihood of safe UAV traversal. The approach involves two
types of UAVs: low-priority agents that explore and localize
threats, and a high-priority agent that navigates safely to its
target destination while minimizing the risk of detection by
enemy radar systems. The low-priority agents employ a decen-
tralized optimization algorithm to balance exploration, radar
localization, and safe path identification for the high-priority
agent. For the high-priority agent, two path-planning methods
are proposed: one for deterministic scenarios using weighted
Voronoi diagrams, and another for uncertain scenarios leveraging
generalized Voronoi diagrams and probabilistic constraints. Both
methods employ optimization techniques to refine the trajec-
tories while accounting for kinematic constraints and radar
detection probabilities. Numerical simulations demonstrate the
effectiveness of our framework. This research advances UAV path
planning methodologies by combining heterogeneous multi-agent
cooperation, probabilistic modeling, and optimization to enhance
mission success in adversarial environments.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being increasingly
deployed in complex and contested environments for mis-
sions that include reconnaissance, surveillance, and combat
operations. A key challenge for the UAVs in these scenarios
is ensuring their safe navigation while avoiding detection by
enemy radar systems. Radar detection is inherently probabilis-
tic, influenced by factors such as radar power, environmental
conditions, and UAV positioning. This uncertainty poses a sig-
nificant challenge for mission-critical UAVs that must traverse
hostile regions while minimizing detection risks.

In this paper, we address this challenge by introducing a
cooperative framework involving two classes of UAVs: a high-
priority agent with a critical mission objective and multiple
low-priority agents tasked with scouting the area. The scout
agents explore the environment, intercept radar emissions, and
estimate radar locations and capabilities, providing critical
information for the high-priority UAV. The high-priority UAV
then leverages this information to traverse a safe path from its
initial location to a target destination.

The use of heterogeneous vehicles increases the likelihood
of mission success by designating low-priority vehicles as
expendable agents. To maximize their value, we optimize
their paths using a three-part objective function that prioritizes
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uncertainty reduction and exploration while ensuring efficient
information gathering along the shortest route. These vehicles
integrate probabilistic radar modeling with cooperative multi-
agent path planning strategies to gather information that in-
creases the survivability and operational effectiveness of high-
priority UAVs operating in adversarial environments.

In addition to our low-priority path planning algorithm, we
introduce two high-priority path planning algorithms tailored
to different levels of radar parameter certainty. The first
algorithm addresses the deterministic case, where all radar pa-
rameters are known. First, we use a multiplicatively weighted
Voronoi diagram together with an A-star search to produce an
initial feasible path. That path is then refined via an interior-
point optimizer to yield a minimum-time trajectory that meets
both safety and kinematic constraints. The second algorithm
is designed for scenarios with uncertain radar parameters. In
this case, we use a generalized Voronoi diagram and the A-star
algorithm to find an initial feasible trajectory, followed by an
optimization process to refine the path.

The key contributions of our work are summarized as
follows:

• Cooperative Path Planning for Low-Priority Agents:
We develop an algorithm that optimally balances regional
exploration and the reduction of uncertainty in detected
radar locations.

• Path Planning with Known Radar Parameters: Uti-
lizing weighted Voronoi diagrams, we design a path
planning algorithm that minimizes radar detection risk
when radar parameters are fully known.

• Path Planning with Uncertain Radar Parameters: For
scenarios with uncertain radar parameters, we introduce
a path planning algorithm based on generalized Voronoi
diagrams to enhance the stealth and survivability of a
high-value UAV.

This paper is organized as follows. Section II reviews
relevant past research. In Section III, we define the problem
and its path-planning applications. Section IV provides essen-
tial background information on radar localization, detection
uncertainty quantification, Voronoi diagrams, and B-splines.
Section VI introduces our multi-agent path planning algorithm
for low-priority vehicles, focusing on exploration and uncer-
tainty reduction. In Section VII, we present our high-priority
path planning algorithm for radar detection avoidance in both
deterministic and uncertain scenarios. Simulation results are
presented in Section VIII, and finally, Section IX concludes
the paper.



II. RELATED WORKS

Our approach involves two different forms of path planning:
one tailored for low-priority attritible agents, and the other
for a high-priority agent. The design of our low-priority
path planning algorithm is informed by previous research in
emitter localization [1]–[7]. Our high priority path planning
algorithm draws on previous studies in radar avoidance path
planning [8]–[17] and obstacle avoidance techniques using
Voronoi diagrams [18]–[24].

The objectives of the low-priority agents are to explore
the environment, discover new radar stations, and reduce
uncertainty in the estimated locations of the identified radars.
Low-priority UAVs discover and localize enemy radar stations.
Prior research in this area employed the extended Kalman filter
(EKF) to track targets and radio frequency sources based on
the angle of arrival and signal strength measurements [1], [2],
[5], [6]. Similarly, we utilize the EKF to estimate the locations
of enemy radar stations and their effective radiated power. To
aid in localization, low-priority agents travel to measurement
locations that give the best information about the environment.

Optimization techniques for measurement placement and
trajectory planning are integral to these approaches, often
leveraging either the Fisher information matrix (FIM) [1],
[2], [6] or the EKF covariance matrix [1], [3]–[5], [25]
in their objective functions. Since scalar representations are
required for optimization, common FIM-based scalarizations
include the determinant of FIM (D-optimality), the trace of
FIM (A-optimality), and the largest eigenvalue of FIM (E-
optimality) [1]. For EKF-based methods, scalarizations like
the determinant [2] or trace [6] of the covariance matrix are
frequently used in the objective functions. These works aim
to optimize path planning by minimizing the scalarization of
the EKF covariance matrix or maximizing the scalarization
of the FIM. The primary goal is to reduce uncertainty in
the estimates as efficiently as possible. However, these works
assume there is already an estimate of where the emitter is
located, which limits their applicability in scenarios where
emitters are initially unknown. Our approach addresses this
limitation by incorporating exploration strategies that allow
agents to discover and localize previously unidentified radar
sources, thus broadening the scope of potential applications.

Building upon these works we utilize reduction of the
determinant of the EKF covariance in our objective function.
We also include extra terms in the objective that incentivize ex-
ploration, creating a trade-off between reducing the uncertainty
in the estimate of the already discovered radar, and exploring
to discover undiscovered radar. We do this through a Bayesian
method outlined in Section VI-A. We also add a third term
in the objective function that promotes exploration towards
the goal location of the high-priority agent, facilitating the
identification of a safe trajectory for the high-priority agent.
Additionally, this term helps prioritize efficient navigation by
balancing exploration and safety requirements.

For high-priority agents, our research builds on prior work
in path planning using Voronoi diagrams and radar detection
avoidance strategies. The authors in [18]–[20] use Voronoi
diagrams to generate initial trajectories, then use smoothing

or optimization algorithms to find feasible minimum-time tra-
jectories. Similarly, we employ Voronoi diagrams to generate
an initial feasible trajectory and then refine the path using a
smoothing and optimization algorithm.

Past research [21]–[24] has used standard Voronoi diagrams
to plan the path around the threat points, such as radar, missile,
or terrain. In these studies, threat levels were modeled by
assigning weights to edges based on the type and parameters
of each threat. The minimum threat path was then computed
through the Voronoi diagram. However, these approaches do
not account for varying threat levels, e.g., the ideal path should
pass closer to a lesser threat. We address this limitation by
employing weighted Voronoi diagrams, where the weighted
Voronoi ridge naturally shifts closer to the radar with a smaller
range, reflecting their reduced threat levels.

The approach in [20] utilizes weighted Voronoi diagrams
to generate trajectories around obstacles. Extending this, we
apply both weighted and generalized Voronoi diagrams to
design initial trajectories that avoid radar. Instead of navigating
around physical obstacles, we leverage weighted Voronoi
diagrams to identify the ridge of minimum probability of
detection between two radar stations with different capabil-
ities. To our knowledge, this represents the first application of
weighted Voronoi diagrams in this context.

Prior research in radar detection avoidance path planning
has predominantly focused on planning routes through enemy
radar under the assumption that the radar parameters, such
as location and power, are fully known [8]–[16]. The authors
in these works use similar formulations and minimize radar
detection or detection probability using the known informa-
tion. The methods vary significantly in their approaches. For
instance, the authors in [8] train a deep reinforcement learning
model to generate paths to minimize or avoid radar tracking.
In [9], a genetic optimization algorithm is employed to plan
safe paths, while leveraging terrain masking to reduce detec-
tion risks. The authors in [10] and [12] developed improved
A-star algorithms to find paths through enemy radar, while
simulated annealing optimization is applied in [11]. Other
techniques include ant colony optimization [13] and calculus
of variations for optimal path planning [16]. Despite their
methodological diversity, all these approaches share a critical
limitation: they assume perfect knowledge of radar parameters.
This assumption neglects the inherent uncertainty in contested
environments, where radar locations and capabilities are often
unknown or probabilistic.

Recently, the authors in [17], [26], [27] introduced a lin-
earization technique to account for uncertainty in radar param-
eters that is similar to the one presented in this paper. In [26],
they provide a sensitivity analysis on the radar probability of
detection equations with respect to the agents. This approach
enables an approximation of the uncertainty in the probability
of detection levels, effectively accounting for the variability in
the agent’s state. In [27] the authors extend their sensitivity
analysis of the radar probability of detection, but instead with
respect to the radar parameters. This approach approximates
the uncertainty in the probability of detection arising from the
inherent variability in the radar parameters.

The path planning approach in [17] uses a visibility graph



around radar-based avoidance polygons, with smoothing ap-
plied to generate a flyable trajectory. Because the visibility
graph places the initial path close to the safety boundaries,
smoothing often causes constraint violations, motivating their
iterative approach of expanding polygons and replanning. In
contrast, we opt to utilize Voronoi diagrams to discover an
initial feasible trajectory (satisfying kinematic feasibility and
maximum PD constraints), followed by refinement using an
interior point optimization algorithm. Both the visibility graph
and Voronoi-based paths require smoothing to ensure kine-
matic feasibility. However, since the Voronoi-based initial path
is biased away from high-risk areas, it reduces the likelihood
that smoothing will violate constraints. This allows the path
to be directly refined with a continuous optimization method,
without requiring iterative replanning.

III. PROBLEM STATEMENT

We consider a scenario where all the agents (UAVs) operate
in a 2D region D ⊂ R2. The low-priority agents are located at
xl,i = [xl,i, yl,i]

⊤∀i ∈ {1, . . . , Nl}, where Nl is the number
of low-priority agents, xl,i is the distance East of the origin,
and yl,i is the distance North of the origin. Additionally, we
assume a single high-priority agent located at xh = [xh, yh]

⊤.
The high-priority agent’s objective is to plan a path starting
at its initial location xh0

and ending at its goal location xhf
,

while avoiding detection by enemy radar. Meanwhile, the low-
priority agent’s aim is to explore the region, detect and locate
enemy radar, and identify a safe path for the high-priority
agent.

There are Nr enemy radar stations in D at locations,
xr,j = [xr,j , yr,j ]

⊤ ∀j ∈ {1, . . . , Nr}. These locations are
unknown to the agents. The low-priority agents are equipped
with sensors capable of intercepting enemy radar emissions.
Each agent is assumed to measure the angle of arrival ϕi,j of
the enemy radar signals, along with the received power. The
received power at the ith agent from the jth radar is given by

SE,i,j =
PT,jGT,jGI,iλ

2

(4π)2R2
i,jLj

, (1)

where PT,j is the power transmitted from the jth enemy radar,
GT,j is the transmit gain of the jth enemy radar, GI,i is
the gain of the ith agent’s intercept antenna, λ is the radar
wavelength (we assume the wavelength for all radar is the
same), Ri,j is the distance between the ith agent and the jth

radar, and Lj is the path loss.
We wish to estimate the location of the radar xr,j and the

effective radiated power (ERP) PE,j for the jth radar, where
the effective radiated power is

PE,j =
PT,jGT,j

Lj
. (2)

We combine the location and ERP for each radar into an
augmented state that will be estimated. The combined state for
the jth radar station is denoted by x̄r,j = [xr,j , yr,j , PE,j ]

⊤,

where
[
xr,j , yr,j

]
is the radar’s location. Given this aug-

mented state, the radar’s measurement model is

h(xl,i, x̄r,j) =

[
SE,i,j

ϕi,j

]
=

 PE,jGI,iλ
2

(4π)2||xa,i−xr,j ||22
arctan

(
yr,j−yl,i

xr,j−xl,i

) . (3)

We assume that the measurements are corrupted with zero-
mean Gaussian noise δ. The kth measurement of the jth radar
from the ith agent is given by

zk
i,j = h(xk

l,i, x̄r,j) + δ, δ ∼ N (0,Σz), Σz =

[
σ2
SE

0
0 σ2

ϕ

]
,

(4)
where σSE

is the noise variance for the power measurement
and σ2

ϕ is the noise variance for the angle of arrival measure-
ment.

As agents traverse the environment, they gather measure-
ments and store them in a set Zi = {zk

i,j}∀k∈{1,...,Nz,i}, where
Nz,i is the number of measurements agent i has taken. The
agents also store the locations where the measurements were
taken, Xz,i = {xk

l,i}∀k∈{1,...,Nz.i}.
We assume known data association, meaning the agents can

reliably identify the radar station from which each measure-
ment originates. This assumption allows us to focus on the core
contribution of our work in path planning, rather than delving
into the complexities of measurement data association, which
would require more advanced estimation algorithms and are
beyond the scope of this paper. In real-world scenarios, agents
can differentiate radar sources by leveraging signal character-
istics such as frequency, pulse width, or pulse patterns, a topic
explored in prior research [28].

IV. BACKGROUND

In this section, we describe several background topics that
contribute to our algorithms. We first provide an overview of
Voronoi diagrams, weighted Voronoi diagrams, and general-
ized Voronoi diagrams. Next, we discuss B-splines, which we
use to parameterize paths.

A. Voronoi Diagrams
An ordinary Voronoi diagram is defined using a set of

generator points Xg = {xg,1, . . . ,xg,Ng
}, where Ng is the

number of generator points and xg,i ∈ Rn, with n being the
dimensions of the space (in our case, we use a planar space
with n = 2). The Voronoi cells are then defined as the region
where the Euclidean distance between all points in the region
and the generator point is less than the distance to any other
generator point [29]:

V (xg,i) = {x | ∥x− xg,i∥2 ≤ ∥x− xg,j∥2,
∀j ̸= i, j ∈ {1, . . . , Ng}}. (5)

The Voronoi diagram generated by the points Xg is the set of
all the Voronoi cells

V(V (xg,1), . . . , V (xg,N )). (6)

Voronoi edges are given as the intersection of two Voronoi
regions if the intersection exists (e.g. V (xg,i)

⋂
V (xg,j) ̸= ∅):

e(xg,i,xg,j) =
(
V (xg,i)

⋂
V (xg,j)

)
. (7)



These edges can either be line segments, half lines (where one
direction of the line starts at a point and extends to infinity), or
infinite lines. The end points of the Voronoi edges are called
Voronoi vertices. These can also be defined as the intersection
of three Voronoi regions [29]. We call the set of Voronoi edges
E(Xg) and the set of Voronoi vertices N (Xg).

Voronoi diagrams can be generated using different distance
metrics. A multiplicatively weighted Voronoi diagram is gen-
erated using a weighted distance metric and is defined by
the set of generator points Xg and a set of corresponding
weights W = {w1, . . . , wN} where wi is the weight that
corresponds to the ith generator point. The multiplicatively
weighted Voronoi regions are defined using the weighted
distance

V (xg,i, wi) ={
x

∣∣∣∣∥x− xg,i∥2
wi

≤ ∥x− xg,j∥2
wj

,∀j ̸= i, j ∈ {1, . . . , Ng}
}
.

(8)

Instead of line segments, Voronoi edges of a multiplicatively
weighted Voronoi diagram are arcs of circles. If an edge exists,
it can be found using the intersection of two weighted Voronoi
regions

e(xg,i,xg,j) =
(
V (xg,i, wi)

⋂
V (xg,j , wj)

)
. (9)

The Voronoi vertices of the multiplicatively weighted Voronoi
diagram are the intersection points of the Voronoi edges. We
define the set of Voronoi edges as E(Xg,W ) and the set
of Voronoi vertices as N (Xg,W ). The edges and vertices
of a multiplicatively weighted Voronoi diagram can be found
efficiently using the algorithm outlined in [30].

B. B-splines

B-splines are piecewise polynomial functions defined by
control points C = {c1, . . . , cNc

}, ci ∈ R2 and knot points
tk = {t0−p∆t, . . . , t0−∆t, t0, t0+∆k, t0+2∆k, . . . tf , tf +
∆k, . . . tf+p∆k} where ∆k = (tf−t0)/(Nk−2p) is the knot
point spacing, Nk = Nc + p+ 1 is the number of knot points
and p is the degree of the B-spline for an unclamped uniform
B-spline. The B-spline is defined on the interval [t0, tf ] as

p(t) =

Nc∑
i=1

Bi,p(t)ci, (10)

where the basis functions Bi,p are defined using the Cox-de
Boor recursive formula shown in [31]. B-splines are commonly
used in path planning applications because of their local sup-
port property (sparse Jacobians) and the convex hull property
(the trajectory must be within the convex hull of the control
points) [19].

We assume that the agents follow unicycle kinematicsẋ(t)ẏ(t)

θ̇(t)

 =

v(t) cos θ(t)v(t) sin θ(t)
u(t)

 , (11)

where v(t) is the speed of the agent at time t and u(t) is the
turn rate. Using the property of differential flatness, we can

define kinematic feasibility constraints as done in [32]. The
velocity of the trajectory can be found as

v(t) = ||ṗ(t)||2, (12)

and the turn rate u(t) is

u(t) =
ṗ(t)× p̈(t)

||ṗ(t)||22
. (13)

We can compute the curvature of the trajectory as

κ(t) =
u(t)

v(t)
. (14)

V. RADAR LOCALIZATION AND PROBABILITY OF
DETECTION

In this section, we outline our method for localizing radar
and estimating the ERP using angle-of-arrival and signal
strength measurements. Our approach to radar localization
utilizes a combination of nonlinear least squares and an EKF
to track enemy radar. We also present a method similar to [26],
[27] that accounts for uncertainty in the radar parameters to
find the radar PD. This approach linearizes the radar PD equa-
tions and propagates the uncertainty through the linearized
model.

A. Radar Localization

Our approach for localizing radar stations uses a non-linear
least squares method to initialize the radar station models,
leveraging available measurements to estimate their initial
parameters. Once a model is initialized, the state estimates are
refined through EKF correction updates as new measurements
are received. The goal is to estimate each radar’s combined
state x̄r,j ; its location and ERP, and the associated uncertainty
of that estimate, represented as a covariance matrix. The esti-
mation algorithm outputs a list of mean value and covariance
pairs, R = {(µx̄r,j ,Σx̄r,j )} ∀j ∈ {1, . . . , Nr̂},where Nr̂ is the
total number of estimated radar stations. Algorithm 1 provides
a detailed outline of the radar estimation process.

The input to the algorithm is a stream of measurements
zk
i,j and measurement locations xk

i,j from all agents. The
Algorithm outputs a mean and covariance estimate for each
radar station that has been discovered R. On line 3, several
lists are initialized; R will store the mean and covariance pairs
for each radar station, then for each radar station a list to
store the measurements Zj and measurement locations Xj

are created. When a new measurement zk
i,j and measurement

location xk
i,j is received, it is added to the list of measurements

Zj and measurement locations Xj for each radar on line 5.
If a model (mean and covariance estimate) exists for the

jth radar, the algorithm uses the EKF measurement correction
step to incorporate the measurement into the existing model
(lines 6-9). This is done by computing the Kalman gain
using the current estimate covariance for the jth radar Σx̄r,j

,
the measurement covariance Σz , and the Jacobian of the
measurement model

Jh(x
k
i , µx̄r,j

) =
∂h

∂x̄r,j

∣∣∣∣
(xk

l,i,x̄r,j)=(xk
i ,µx̄r,j

)

(15)



evaluated at the measurement location xk
i and the current mean

value µx̄r,j . After the Kalman gain is computed, the mean and
covariance values are updated.

If a model does not exist for a specific radar, the algorithm
will initialize a new one if there are at least Nz,min (lines 10-
13). A new track’s mean value µx̄r,j

is calculated using a non-
linear least squares optimization algorithm where the objective
function is to minimize the sum of the squared Mahalonobis
distances between the measurements and the measurement
model. The covariance is approximated by finding the inverse
of the Fisher information matrix. To do this, we find the
Jacobian of each measurement model with respect to its state
x̄r,j and stack them as

Jh(Xj) =



Jh(x
k
1 , µx̄r,j )

...
Jh(x

k
i , µx̄r,j

)
...

Jh(x
k
Nr,min

, µx̄r,j )

 . (16)

Similarly, the measurement covariance is stacked in a block
diagonally form as

Σz =


Σz 0 0 · · · 0
0 Σz 0 · · · 0
0 0 Σz · · · 0
...

...
...

. . .
...

0 0 0 · · · Σz

 . (17)

Equations (16) and (17) are then used to approximate the
covariance of the estimate of the radar’s location and ERP
(line 12). The new model (µx̄r,j

,Σx̄r,j
) is added to the list of

models R in line 13.

Algorithm 1 EKF for radar model estimation
1: Input: stream of measurement zk

i,j and measurement
locations xk

i from all agents
2: Output: R
3: Initialize: R ← ∅, Zj ← ∅, Xj ← ∅, Nz,j = 0 ∀j ∈
{1, . . . , Nr}

4: for zk
i,j ,x

k
i in stream do

5: Xj = Xj

⋃
{xk

i }, Zj = Zj

⋃
{zk

i,j}
6: if Model j is initialized then
7: K = Σx̄r,j

Jh(x
k
i , µx̄r,j

)⊤(Jh(x
k
i , µx̄r,j

)Σx̄r,j
Jh(x

k
i , µx̄r,j

)⊤+
Σz)

−1

8: µx̄r,j
= µx̄r,j

+K(zk
i − h(xk

l , µx̄r,j
))

9: Σx̄r,j = (I −KJh)Σx̄r,j

10: else if |Zj | = Nr,min then
11: µx̄r,j

= argmin
µx̄r,j

∑
xk

l ∈Xj ,zk∈Zj
||h(xk

l , µx̄r,j
)−zk||2Σz

12: Σx̄r,j
= (JhΣ

−1
z J⊤

h )
−1

13: R← R
⋃
(µx̄r,j ,Σx̄r,j )

14: else
15: Pass
16: end if
17: end for

B. Radar Probability of Detection

We now present the method used to calculate PD and its
associated uncertainty, employing a linearization technique
similar to the approach described in [27].

The signal-to-noise ratio (SNR) from ith agent to the jth

radar is

Si,j(Θk,i,Θu,j ,Θe,j) =
PE,jGR,jλ

2σiτp,j
(4π)3R4

i,jκTs,jLj
, (18)

where GR,j is the gain of the receive antennae of the radar, σi

is the radar cross section (RCS) of the agent, τp,j is the radar
pulse length, κ is the Boltzman constant, and Ts,j is the radar
system noise. Uing the SNR the PD of the ith agent from the
jth radar is

PD,i,j(Θk,i,Θu,j ,Θe,j)= exp

{
lnPfa,j

Si,j(Θk,i,Θu,j ,Θe,j)+1

}
,

(19)
where Pfa,j is the probability of a false alarm (determined
by radar operator) and Si,j . The SNR and PD are functions
of known parameters of the agent Θk,i = [σi,xi], unknown
parameters of the radar Θu,j = [Pfa,j , GR,j , λ, τp,j , Ts,j ]

⊤ and
estimated parameters of the radar Θe,j = x̄r,j .

Using the current estimate of the radar parameters, the
overall probability of detection of the ith agent is given as

PD,i(Θk,i,Θu,Θe) = 1−
Nr̂∏
j=1

(1−PD,i,j(Θk,i,Θu,j ,Θe,j)),

(20)
where Nr̂ is the current number of discovered radar, Θu =
{Θu,j}∀j∈{1,...,Nr} is the set of unknown radar parameters
for radar systems within range of the ith agent, and Θe =
{Θe,j}∀j∈{1,...,Nr} is the set of estimated radar parameters
also for radar systems within range of the ith agent.

Using the known, unknown, and estimated parameters, we
wish to compute the PD and provide a covariance for that
estimate. We do this by creating a first-order approximation
of the PD (Equation (20)),

PD,i(Θk,i + δk,Θu + δu,Θe + δe) ≈

PD,i(Θk,i,Θu,Θe) + δk
∂PD,i(Θk,i,Θu,Θe)

∂Θk,i
+

δu
∂PD,i(Θk,i,Θu,Θe)

∂Θu

+ δe
∂PD,i(Θk,i,Θu,Θe)

∂Θe

,

(21)

where δk ∈ R3, δu ∈ R5Nr̂ , and δe ∈ R3Nr̂ , are per-
turbations in known, unknown, and estimated parameters
respectively. The Jacobian of Equation (20) with respect to
the agent’s parameters is ∂PD,i(Θk,i,Θu,Θe)/∂Θk,i. And
similarly, Θk,i, ∂PD,i(Θk,i,Θu,Θe)/∂Θu is the Jacobian of
Equation (20) with respect to the unknown radar parameters
Θu, and ∂PD,i(Θk,i,Θu,Θe)/∂Θe is the Jacobian of Equa-
tion (20) with respect to the estimated radar parameters Θe.
These Jacobians can be found analytically or through auto-
matic differentiation. In this work, we use the JAX automatic
differentiation library [33].

We assume that we have a known Gaussian distribution
Θk,i ∼ N (µΘk,i

,ΣΘk,i
) that quantifies the uncertainty in the



agent’s known parameters. To get a similar distribution for the
radar’s estimated parameters, we use the estimator described
in Section V-A to obtain mean value and covariance estimates
for each discovered radar R. We then combine these into a
mean vector

µΘe
=


µΘe,1

µΘe,2

...
µΘe,Nr̂

 (22)

and covariance matrix

ΣΘe
=


ΣΘe,1 0 . . . 0
0 ΣΘe,2

. . . 0
... . . .

. . .
...

0 . . . . . . ΣΘe,Nr̂

 , (23)

where the individual radar estimates are uncorrelated and the
combined radar parameters are normally distributed Θe ∼
N (µΘe

,ΣΘe
).

Because we cannot estimate the unknown parameters, we
must use prior knowledge of the system to create reasonable
prior beliefs of these parameters. We assume a normal distri-
bution and represent the mean value of this prior belief as

µΘu
=


µΘu,1

µΘu,2

...
µΘu,Nr̂

 (24)

and covariance matrix as

ΣΘu
=


ΣΘu,1

0 . . . 0
0 ΣΘu,2

. . . 0
... . . .

. . .
...

0 . . . . . . ΣΘu,Nr̂

 , (25)

where µΘu,j
and ΣΘu,j

are the mean value and covariance
for the unknown parameters of the jth radar station and
the combined unknown parameters are normally distributed
Θu ∼ N (µΘu

,ΣΘu
). In this work, we use the same prior

distribution for each radar’s unknown parameters (µΘu,j
=

µΘu,i
,ΣΘu,j = ΣΘu,i,∀(i, j) ∈ {1, . . . , Nr̂}).

Using these distributions and the linearized model of PD
we can find the mean value of the PD as

µPD,i
(Θk,i,Θu,Θe) = PD,i(µΘk,i

, µΘu
, µΘe

). (26)

and the variance

σ2
PD,i

(Θk,i,Θu,Θe) = (27)

∂PD,i(Θk,i,Θu,Θe)

∂Θk,i
ΣΘk,i

∂PD,i(Θk,i,Θu,Θe)

∂Θk,i

⊤

+

∂PD,i(Θk,i,Θu,Θe)

∂Θu

ΣΘu

∂PD,i(Θk,i,Θu,Θe)

∂Θu

⊤

+

∂PD,i(Θk,i,Θu,Θe)

∂Θe

ΣΘe

∂PD,i(Θk,i,Θu,Θe)

∂Θe

⊤

. (28)

Using this mean and covariance, we can create an approximate
distribution for PD PD,i ∼ N (µPD,i

, σ2
PD,i

). We can then use

this distribution to approximate the probability of the true PD
being below a threshold:

P (PD ≤ PD,t) =

Φ
(
PD,t, µPD

(Θk,i,Θu,Θe), σ
2
PD

(Θk,i,Θu,Θe)
)
, (29)

where

Φ(x;µ, σ2) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
(30)

is the normal cumulative distribution function and

erf(z) =
2√
π

∫ z

0

e−t2 dt. (31)

VI. LOW-PRIORITY AGENT PATH PLANNING

The objective of low priority agents is to explore the oper-
ational area, discover unknown enemy radar, and find a safe
path for the high priority agent. We employ a decentralized
optimization strategy. Each agent uses the current information
it has received about the environment to plan its own path. This
path information is transmitted to other agents, who then plan
their paths. The paths are planned in a round-robin fashion,
where the agent closest to the most uncertain radar station
plans their path first.

A. Objective Function

The agents’ goals of discovering enemy radar, better lo-
calizing discovered radar, and finding the optimal path for the
high-priority agent lead to a three-part objective function. First,
agents should explore unexplored regions. We encourage this
through a Bayesian approach described later in Equation (38).
Second, agents need to reduce the uncertainty of the previously
discovered radar. Agents accomplish this through the use of an
objective that incentivizes choosing waypoints that will reduce
the uncertainty in the EKF estimate of the radar parameters.
This objective will be quantified below in Equation (40).
Finally, agents are searching for the optimal (minimum-time)
trajectory for the high-priority agent. This optimal trajectory is
most likely found near the strait line path between the starting
location, xh0 , and the goal location, xhf

, of the high priority
agent. We penalize the objective function by the distance the
agent is from the straight-line path encourage exploration near
the strait line trajectory, as shown in Equation (41).

We use a non-linear interior point optimization algorithm
called IPOPT [34], to find waypoints for the low-priority
agents. We constructed an objective function that applies the
trade-off between exploiting known information and exploring
for new information. Our objective function has three parts:
exploration, radar parameter uncertainty reduction, and goal-
directed search prioritization for the high-priority agent.

The overall objective function is the sum of the three part:

Γ(x, Xe, R) = −αeΓe(x, Xe) + αuΓu(x, R) + αsΓs(x),
(32)

where αe, αu, and αs are the weights for the exploration, un-
certainty reduction, and goal objective functions, respectively.
Vector Xe is the combined path history of all agents, and R is
the current output of the EKF (described in Section V-A) that



Fig. 1. This figure shows the three different parts of the objective function. The left figure shows the covariance reduction objective function Γu(x). The
estimated radar location is plotted in red. From this figure we see that the best measurement locations to reduce a radar’s covariance uncertainty, according
to this objective function, come from being closer to the radar, and from going perpendicular to the current measurements. The middle figure illustrates the
exploration objective function Γe(x), where the green points show locations the agents have already explored. Going further from the explored area provides
better measurements. The final plot shows the distance to goal objective, where the goal is in the upper right corner of the plot.

is a list of means and covariances for each discovered radar.
Each part of the objective function is shown in Figure 1.

Every agent keeps a list of locations that they have explored:
Xe,i = {xl,i(t0),xl,i(t0+∆te),xl,i(t0+2∆te), . . . ,xl,i(t0+
Ne∆te)}, where xl,i(t) is the state of ith low priority agent
at time t, t0 is the time when the agent started its mis-
sion, ∆te is the time interval between path history points,
and Ne is the current number of stored path history points
(Ne = int(tc/∆te)). The individual path history list of every
agent is combined into a single list Xe =

⋃Nl

i=1 Xe,i.
From this combined path history, we will approximate the

probability that an undiscovered radar is present at a location
x given the locations that the agents have visited. We do
this using Bayes rule and approximating the probability that
an agent intercepts an enemy radar signal. Given an agent
was at location xl,i(tj), and that a radar is at location x, the
probability the agent would have intercepted a signal is given
by:

P (intercept at xl,i(tj)|radar at x)= exp
ln(Pfa)

S (xl,i(tj),x)+1
,

(33)
where Pfa is the probability of false alarm, and S(xi,x) is the
signal to noise ratio (SNR) between the agent and the radar.
The SNR is given by:

S(xl,i(tj),x) =
PTGTGI,iλ

2τp
(4π)2||xl,i(tj)− x||22κTsLδi

. (34)

Since the parameters of the potentially undiscovered radar are
unknown, we assume default values for the transmitted power,
PT , the transmit gain, GT , the pulse width, τp, the system
temperature, Ts, and the loss factor, L. However, we have
prior knowledge of the agent’s intercept antenna gain, GI,i and
the signal wavelength, λ. In addition, we introduce a discount
term, δl, to account for signal degradation caused by factors
such as misaligned antennae, mismatched filters, and other
unknown losses. The probability of failing to intercept a signal
at xi, given that a radar is located at x, is related to the prob-

ability of intercepting by P (no intercept at xi|radar at x) =
1− P (intercept at xi|radar at x).

We wish to approximate the probability that a radar could
be found at location x given that the agents did not intercept
signals at the locations Xe. Using Bayes rule, this is given
by:

P (radar at x|
⋃

no intercept at xi,xi ∈ Xe) =

P (
⋃

no intercept at xi,xi ∈ Xe|radar at x)P (radar at x)
P (

⋃
no intercept at xi,xi ∈ Xe)

.

(35)

If we assume that intercepting a signal at xi is independent
of intercepting a signal at a different location, given that there
is a radar at x, then

P (
⋃

no intercept at xi,xi ∈ Xe|radar at x) =∏
xi∈Xe

P (no intercept at xi|radar at x). (36)

We assume P (radar at x) = 0.5, meaning there are equal
chances that a radar is present at x or not. If additional
information about radar locations in the region were available,
it could be used to refine this prior probability. To find the
denominator, we use a partition:

P (
⋃

no intercept at xi,xi ∈ Xe) =

P (
⋃

no intercept at xi,xi ∈ Xe|radar at x)P (radar at x)+

P (
⋃

no intercept at xi,xi ∈ Xe|no radar at x)P (no radar at x).
(37)

We know P (no intercept at xi|no radar at x) = 1 − Pfa .
Assuming that not intercepting a signal at one location is inde-
pendent of not intercepting a signal at another location when
no radar is present, we can write P (

⋃
no intercept at xi,xi ∈

Xe|no radar at x) = (1 − Pfa)
|Xe|, where |Xe| is the

cardinality of Xe.



Combing all this, for our exploration objective, we wish
for the low priority agents to maximize the likelihood that an
undiscovered radar exists at a location x

Γe(x, Xe) =∏
xi∈Xe

(1− exp
ln(Pfa)

S(xi,x)+1 )Φ(x)∏
xi∈Xe

(1− exp
ln(Pfa)

S(xi,x)+1 )Φ(x)+(1−Pfa)|Xe|(1−Φ(x))
,

(38)

where Φ(x) is a function that computes the prior probability
P (radar at x) given a location x. For this paper, we assume
Φ(x) = 0.5 for all x, however, if more prior information is
available, it could be incorporated into Φ(x). This part of the
objective function is shown in the left image of Figure 1.

The second part of the objective function, Γu(x), guides
agents toward areas where radar measurements are more
informative and will improve localization. We do this by
noting that when a measurement is incorporated into an EKF,
the covariance does not depend on the value that is measured,
only on the location at which the measurement was taken.
This part of the objective function incentives reducing the
determinant of the covariance of the radar parameter estimate
that would result from taking a measurement were taken at a
given location. This part of the objective function is the same
as was used in [2].

From the estimator, we have a list of the current estimated
mean and covariance values for the radar parameters R. The
equation for the updated covariance when incorporating an
additional measurement is:

cov+(x, µxr,j
,Σxr,j

) = (I −KJh(x, µxr,j
))Σx̄r,j

, (39)

where K is the Kalman gain defined in Algorithm 7, I is the
identity matrix, and Jh is the Jacobian of the measurement
model. Given a list of models–each defined by their mean and
covariance–for all the discovered radars, we aim to find the
measurement location that would most improve all the models.
To do this, we compute the mean of the determinant of all the
updated covariances that would result if a measurement were
taken at location x. This yields,

Γu(x, R) =
1

Nr̂

∑
(µxr,j

,Σxr,j
)∈R

det(cov+(x, µxr,j
,Σxr,j

))

dcov
, (40)

where dcov is a normalizing term that controls how much the
objective function prioritizes reducing the covariance. Once
the mean value of the determinant of the future covariances
is much less than dcov, the covariance reduction objective will
no longer affect the objective function. This allows agents to
ignore radar stations that are localized well enough, where well
enough is defined by dcov. At location x, it is not likely that
a measurement will be received for each model; however, this
objective is a good heuristic to see how traveling to a certain
location will improve the current estimates of the enemy radar.
This part of the objective function is visualized in the center
image of Figure 1.

The next part of the objective function Γs(x) incentives
the low-priority agents to explore in the direction of the high-

priority agent’s goal. The objective is the normalized distance
to the high-priority goal,

Γs(x) =
∥x− xhf

∥2
dmax

, (41)

where dmax is the maximum distance in the region D from the
goal xhf

. This portion of the objective function is shown in
the right image of Figure 1.

Equation (32) shows how the three parts of the objective
function are combined using the weights αu, αe, and αs. Be-
cause we minimize Equation (32), we subtract the exploration
objective function, Equation (38). This results in maximizing
the likelihood of discovering an undiscovered radar.

B. Multi-Agent Optimization

Given multiple low-priority agents, we require a coordi-
nation strategy that prevents all agents from converging on
the same high-reward locations. To address this, we employ a
decentralized strategy in which each agent selects its optimal
waypoint xw

l,i (for the ith low-priority agent). The agent’s travel
towards their waypoint in a straight-line (or minimum-path?)
trajectory. This approach is only effective if we deconflict the
waypoints each agent chooses.

The order of waypoint selection is determined by each
agent’s distance to the radar with the highest uncertainty (as
measured by the determinant of the covariance). Waypoint
optimization is triggered either when an agent reaches its
current waypoint or through a receding horizon (RH) scheme.
Additionally, if a fixed time interval Th has elapsed since
an agent has re-planned its path, waypoint optimization is
re-initialized. Each agent picks its next waypoint xw

l,i by
minimizing Equation (32). We employ a decentralized method
by allowing agents to pick their waypoint based on the
information they have received, and then computing their
future path, and sharing that with other agents.

Algorithm 2 shows our low-priority path planning scheme.
The input to our algorithm is the current estimate of the radar
parameters and locations R and the current combined path
history of all agents Xe. The output is a waypoint xw

l,i for
each low-priority agent. We use a receding horizon scheme;
If the time since an agent has last planned its path th,i is
greater than the receding horizon time Th, a new waypoint
optimization is triggered. The most uncertain radar (based on
the determinant of its covariance) is found in line 6. The
distance between this radar and all agents is then found in
line 7. The agents are then sorted by distance to the most
uncertain radar in line 8. Agents optimize waypoints in order
of which is closest to the most uncertain radar to ensure that
the closest agents are tasked with reducing the uncertainty of
the most uncertain radar. Then each agent is looped through
in this order. The ith agent then optimizes its waypoint xw

l,i

based on Equation (32). To enable decentralized path planning,
each agent plans its waypoint based on the information it
has received. After picking a waypoint, the agent samples
the path between its current location xl,i(t) and the waypoint
to simulate where it will travel in the future (line 12). This
future path information is combined with the agent’s current



Algorithm 2 Multi-agent Path Planning for Low Priority
Agents

1: Input: R,Xe

2: Output: xw
l,i ∀i ∈ {1, . . . , Nl}

3: th,i = Th ∀i ∈ {1, . . . , Nl}
4: while High priority path not found do
5: if th,i > Th for any i ∈ {1, . . . , Nl} then
6: j = argmax(µxr,j

,Σxr,j
)∈R det(Σxr,j )

7: Di,j = {||xl,i(t)− µxr,j
||2}∀i∈{1,...,Nl}

8: I = argsort(Di,j)

9: R
+ ← R, X

+

e ← Xe

10: for i ∈ I do
11: xw

l,i = argminx∈D(Γ(x, X
+

e , R
+
))

12: X
+

e,i =
{
x|x = q

xw
l,i−xl,i(t)

||xw
l,i−xl,i(t)||2∆tevl ∀q ∈

{1 . . . , int
(

||xw
l,i−xl,i(t)||2

∆tevl

)}
{Sample future path}

13: X
+

e = X
+

e

⋃
X

+

e,i

14: R
+

= {(µxr,k
, cov+(xw

l,i, µxr,k
,Σxr,k

)∀k ∈
{1, . . . , Nr̂}}

15: transmit(R
+
, X

+

e )
16: th,i = 0
17: end for
18: end if
19: end while

knowledge of its past path and the past paths of other agents
in line 13. To approximate the effect that the potential future
measurement taken at xw

l,i will have on the estimated radar
parameter covariances, we compute what the future covariance
would be for each estimated radar if a measurement were
taken at the waypoint in line 14. The future path X

+

e and
the future covariance information R

+
are then transmitted

to all agents in range. To reduce communication bandwidth,
measures could be taken, such as sending only information that
has not already been transmitted, such as the communication
protocols described in [35]. This process is repeated until all
agents have optimized their waypoints.

VII. HIGH-PRIORITY PATH PLANNING

The goal of the high priority path planner is to find a
safe path that starts at xh0 and ends at xhf

, while keeping
the PD along the trajectory less than a threshold PD,t. The
high priority agent does not have perfect knowledge of the
region, it only has estimates of the radar parameters R that the
low priority agents have found. The high-priority agent must
account for this uncertainty when planning trajectories. We do
this by approximating the probability that the true probability
of detection (Equation (20)) is less than a certain threshold
(Equation (29)). In this work, we present two path-planning
methods for the high-priority agent, one for the deterministic
case, where the radar parameters are all known, and the other
for the uncertain case, where the radar parameter estimates
and prior beliefs are used. Both rely on the use of Voronoi
diagrams to find initial feasible trajectories, then using interior

point optimization algorithms (IPOPT [34]) to optimize a B-
spline trajectory which accounts for the path safety (PD) and
kinematic feasibility constraints (velocity, curvature, turn rate).

A. Deterministic High-Priority Path Planner

For the deterministic case, we assume that the high-
priority agent has knowledge of all the radar’s parameters,
xr,j , PT,j , GT,j , GR,j , λ, τp,j , Ts,j and Lj . Using this infor-
mation, we wish to find a feasible trajectory where the
probability of detection along the entire trajectory is below
a threshold PD,t, e.g., PD ≤ PD,t,. To do this, we first use
a multiplicatively weighted Vornoi diagram along with the
A-star graph search algorithm [36]. We then fit a B-spline
trajectory to the path and use a heuristic to ensure that velocity
constraints are met. Finally, we use that B-spline trajectory as
a seed trajectory to an interior point optimization algorithm,
which finds the minimum time trajectory with PD, velocity,
turn rate, and curvature constraints.

To find an initial feasible trajectory, we use a multiplica-
tively weighted Voronoi diagram. We show that the minimum
PD boundary between two radars is equivalent to finding the
edges of a multiplicatively weighted Voronoi cell. We use this
to find the boundary between two radar stations where the PD
from each radar station is equal. For the jth and kth radars,
this yields

exp
lnPfa,j

PE,jGR,jλ2σiτp,j
(4π)3R4

i,jκTs,jLj
+ 1

= exp
lnPfa,k

PE,kGR,kλ2σiτp,k
(4π)3R4

i,kκTs,kLk
+ 1

. (42)

If we assume that Pfa,j = Pfa,k, finding the boundary where
the PD is equal for both radars is the same as finding the
region where the SNR for both radars is equal:

PE,jGR,jλ
2σiτp,j

(4π)3R4
i,jκTs,jLj

=
PE,kGR,kλ

2σiτp,k
(4π)3R4

i,kκTs,kLk
. (43)

Rearranging this equation to match the multiplicatively
weighted Voronoi diagram, we get:

Ri,j

(
κTs,jLj

PE,jGR,jλ2σiτp,j
)

1
4

=
Ri,k

(
κTs,kLk

PE,kGR,kλ2σiτp,k
)

1
4

. (44)

This means the boundary (path) between two radars with
minimum PD is equivalent to the multiplicatively weighted
Voronoi edge generated using the radar locations as generator
points where the weight for the jth radar is

wj =

(
κTs,jLj

PE,jGR,jλ2σiτp,j

) 1
4

. (45)

We denote the set of Voronoi edges generated using the radar
locations Xr = {xr,1, . . . ,xr,Nr} and the weights W r found
using Equation (45) as E(Xr,W r).

Algorithm 3 presents our high-priority path planning
method. It takes as input the radar locations and their as-
sociated weights, which are computed using Equation (45).
The algorithm outputs a set of control points, Copt, along with
knot points (determined using the final time tf ) that define an
optimized B-spline trajectory.



Fig. 2. This figure shows the steps of our deterministic high-priority path planning algorithm (Algorithm 3). In the top left figure, the weighted Voronoi
diagram is found. Then all edges where PD ≤ PD,t for any point along the edge are removed. In the top right figure, A-star is used to find the shortest path
through the graph. In the bottom left, a B-spline is fit to the A-star path. Then, in the bottom center, the optimized B-spline is shown. All figures show the
locations of the radar as red x’s with the PD at every location depicted by the heatmap.

Algorithm 3 Deterministic High-Priority Path Planning

1: Inputs: Xr,W r,xh0
,xhf

2: Output: C, tk
3: E = computeWeightedVoronoiEdges(Xr,W r)
4: V = computeWeightedVoronoiVertices(Xr,W r)
5: V, E = intersectVoronoiEdgesWithBoundary(V, E)
6: E = trimInfeasibleEdges(E)
7: Vopt, Eopt = shortestPathThroughGraph(V, E ,xh0

,xhf
)

8: C0 = fitSplineToPath(Vopt, Eopt, Nc, p)
9: tf = checkVelocityConstraint(C0, vlb, vub)

10: Copt, tf = optimizeTrajectory(C0, tf ,xh0
,xhf

)

Computing Weighted Voronoi Diagrams. The algorithm’s
first step is to compute the weighted Voronoi diagram, specif-
ically its edges E and vertices V , using the method outlined
in [30]. These diagrams represent proximity relationships
among the radar nodes, factoring in their weights.

Intersecting Voronoi Edges with the Boundary. In line 5, we
intersect the Voronoi edges with the boundary of the operating
region D. For a rectangular region defined by lower and upper
bounds xlb and xub, we check each edge in E for intersections
with the four sides of the region. Intersections result in new
vertices added to V , and the corresponding edges are trimmed
to lie within the region. Additionally, edges between boundary-
intersecting vertices are added to E to preserve connectivity.

Trimming Edges Based on PD Constraints. In line 6, we
remove the edges of E that have a maximum PD along the

path above that of the threshold PD,t. For each edge in E , we
find the point closest to the generator points corresponding to
the edge. Each edge has two corresponding generator points,
and the closest point on the edge to both points will be the
same. Each edge is an arc of a circle defined with a center
xe,i, radius re,i, start angle θ0,e,i and stop angle θf,e,i. The
closest point on the arc to the generator point xr,j is

θi,j = arctan

(
yr,j − ye,i
xr,j − xe,i

)

xi,j=



xe,i + re,i

[
cos θi,j

sin θi,j

]
, θ0,e,i ≤ θi,j ≤ θf,e,i

xe,i + re,i

[
cos θ0,e,i

sin θ0,e,i

]
, |θ0,e,i − θi,j | ≤ |θf,e,i − θi,j |

xe,i + re,i

[
cos θf,e,i

sin θf,e,i

]
, |θf,e,i − θi,j | ≤ |θf,e,i − θi,j |.

(46)
The PD at this closest point is found using Equation (20). If

the PD is greater than the threshold PD,t, that edge is removed
from E .

Graph Construction and Path Search. Using the trimmed
set of vertices V and edges E a graph is created. We then
use the A-star algorithm [36] to find the shortest path through
the graph, where the distance between the nodes is the arc
distance of the edge connecting the nodes, starting at the node
corresponding to xh0

and ending at xhf
. This path is defined

as an ordered list of vertices Vopt and edges Eopt.



Spline Fitting and Time Adjustment. We then fit a B-spline
to the shortest path (line 8). The path is first sampled, and
a B-spline is fitted with Nc control points, degree p, and
internal knots spaced over the interval [0, 1]. To satisfy velocity
constraints, we use a heuristic approach: we sample the
spline’s velocity using Equation (12) and check its maximum
value. If the constraint is violated, tf is increased, knot points
are recomputed over [0, tf ], and the process is repeated until
the velocity constraint is satisfied.

Trajectory Optimization. Finally, an interior-point opti-
mization algorithm (IPOPT [34]) refines the trajectory to
minimize travel time, while conforming to physical feasibility
constraints. The optimization problem is:

Copt = argmin
C,tf

tf (47a)

subject to p(0) = xh0
(47b)

p(tf ) = xhf
(47c)

p(ts) ∈ D (47d)
vlb ≤ v(ts) ≤ vub (47e)

ulb ≤ uA(ts) ≤ uub (47f)
−κub ≤ κA(ts) ≤ κub (47g)

PD(p(ts)) ≤ PD,t, (47h)

where ts = {0,∆s, 2∆s, . . . , tf} are the discrete points in
time where the constraints are evaluated, ∆s = tf/Ns is the
time spacing between constraint samples and Ns is the number
of constraint samples. We discretely sample the constraints,
which means that the constraints could be violated between
samples. However, the likelihood of this is reduced with an
increasing number of samples.

The objective of Equation (47a), is to find the minimum time
trajectory, starting at xh0

and ending at xhf
. The constraint

in Equation (47d) ensures that the agent stays within the
operating region D. The next three constraints, Equations (47e)
through Equation (47g), show the constraints of kinematic
feasibility, velocity, turn rate, and curvature. These ensure that
the agent can physically follow the planned trajectory. The
final constraint, Equation (47h), ensures that the PD of the
agent (found using Equation (20)) is below the threshold. The
steps of this algorithm are shown in Figure 2.

B. Uncertain High-Priority Path Planner

The previous section handled the case where the radar
parameters are known by the agent. In this section, we present
a trajectory planning algorithm that handles the case where
the agent has uncertain estimates and prior beliefs of the
radar parameters. Our approach parallels the deterministic
case, but instead of forcing a threshold on PD, we have
impose a constraint on the likelihood of the true PD falls
below the threshold (P (PD ≤ PD,t) ≥ ϵ), which is found
using Equation (29)).

The key difference between our deterministic and uncertain
planners lies in the generation of the initial feasible trajectory.
While we still use Voronoi diagrams, we use a generalized
Voronoi diagram rather than a multiplicatively weighted one.

The metric that generates the diagram is the likelihood that
the true PD is below the threshold P (PD ≤ PD,t) found from
the approximate PD distributions created using the mean and
variance from Equations (26) and (27).

The remainder of the algorithm proceeds the same as in
the deterministic case, with the exception of the path safety
constraint used.

Algorithm 4 Uncertain High-Priority Path Planning

1: Inputs: Rt, Xe,t,xh0
,xhf

2: Output: C, tk
3: E ,V=computeGeneralizedVoronoiEdgesAndVertices(R)
4: E = trimInfeasibleEdges(E , R)
5: Vopt, Eopt = shortestPathThroughGraph(V, E ,xh0 ,xhf

)
6: C0 = fitSplineToPath(Vopt, Eopt, Nc, p)
7: tf = checkVelocityConstraint(C0, vlb, vub)
8: Copt, tf = optimizeTrajectory(C0, tf ,xh0

,xhf
, R)

9: Pmax = maxts∈ts(Γe(p(ts), Xe,t))
10: if Pmax ≤ Pt then
11: Dispatch high-proirty agent
12: end if

Algorithm 4 outlines our method. The input of the algo-
rithm is the current estimate of the radar parameters and the
covariances Rt, the current combined agent path history list
Xe,t, at time t, and the start xh0

and destination xhf
locations

of the high priority agent.
The first step in the algorithm is to find the generalized

Voronoi edges and vertices using P (PD ≤ PD,t) as the metric.
This is accomplished using the grid-based algorithm shown in
Algorithm 5. We begin by generating an evenly spaced set of

Algorithm 5 Grid Based Generalized Voronoi Diagram

1: Inputs: R
2: Output: E ,V
3: Xt = evenlySpaceSampeles(D)
4: A = {argminj(P (PD(xt,i, θu,j , θe,j) ≤ PD,t)}∀xt,i ∈

Xt

5: N = findAdjecentCellsUsingVoronoi(R)
6: E ,V = findGeneralizedVoronoiEdges(N,A)

test points in the region Xt. At each test point, we evaluate
the likelihood that the true PD falls below the threshold for
each radar. Each point is then assigned to the Voronoi cell
corresponding to the radar that minimizes this likelihood, as
shown in line 4.

This process provides the generalized Voronoi cells; how-
ever, we need to find the edges and vertices between these
cells. To find the edges we look at the contours around each
cell. For each pair of neighboring cells, we find the portion of
each cell’s contours that overlap. This overlapped portion of
the cell boundary boundaries is the generalized Voronoi edge
between the cells. We then fit a third-order B-spline to this
boundary, resulting in each edge being defined using control
points, knot points ei,j = (Cij , ti,j). The Voronoi vertices are
the points where the generalized Voronoi edges intersect.

After finding the generalized Voronoi edges and vertices,
our Algorithm 4 proceeds similarly to Algorithm 3. Infeasible



Fig. 3. This figure shows the steps of our uncertain high-priority path planning algorithm (Algorithm 4). In the top left figure, the generalized Voronoi diagram
is found using P (PD ≤ PD,t) as the metric. Then all edges where P (PD ≤ PD,t) < ϵ are removed. In the top right figure, A-star is used to find the
shortest path through the graph. In the bottom left, a B-spline is fit to the A-star path. Then, in the bottom center, the optimized B-spline is shown. Finally,
the bottom left image shows the path safety metric. In this figure, the low-priority agents’ paths are shown in red. All figures show the current estimated
location of the radar as red x’s. The first five show P (PD ≤ PD,t) as the heatmap.

edges are trimmed in Line 4. Because there is no closed-form
solution to the location of the lowest P (PD ≤ PD,t), we
sample the edge and check many different locations. If the
probability that the PD is below the PD threshold is below
ϵ for any of the sampled points on the edge, that edge is
removed. After infeasible edges are removed, we use the A-
Star algorithm to find the shortest path through the graph
created using the generalized Voronoi vertices and trimmed
edges. We then sample the path and fit a B-spline to the path
using Nc control points and internal knot points defined on
[0, 1]. We use the same huerisitc method described for the
deterministic path planner to ensure the velocity constraint is
met. After a feasible initial trajectory is found we use IPOPT
to refine the trajectory according to the following optimization
problem:

Copt = argmin
C,tf

tf (48a)

subject to p(0) = xh0 (48b)
p(tf ) = xhf

(48c)
p(ts) ∈ D (48d)

vlb ≤ v(ts) ≤ vub (48e)
ulb ≤ uA(ts) ≤ uub (48f)

−κub ≤ κA(ts) ≤ κub (48g)
P (PD(p(ts), θu, θe) ≤ PD,t) ≥ ϵ, (48h)

This optimization problem is the same as the deterministic case

(Equation (47)) except for the final constraint (48h). Instead
of using the ground-truth PD evaluated at points along the
trajectory, we use the approximate probability that the ground-
truth PD is greater than ϵ. This ensures the probability of the
path being safe (PD ≤ PD,t) is greater than ϵ accounting for
the uncertainty from the estimates and prior beliefs.

The final step of the algorithm is to test the path to see if
it is likely that there are undiscovered radar stations near the
path. So far, the algorithm has only accounted for discovered
radar, and it has no sense of the danger from undiscovered
radar. Using Equation (38) we find the probability that an
undiscovered radar is on the optimized trajectory. If this
probability is greater than a threshold at any point along
the trajectory, we determine that the path is not safe enough
for the high-priority agent to traverse. If the probability is
lower than the threshold at all points on the trajectory, the
path is determined to be safe, and the high-priority agent is
dispatched. Each step of your algorithm is outlined in Figure 3.

VIII. RESULTS

In this section, we present simulation results for our low-
priority and high-priority path planning algorithms. We first
present results for the low-priority path planner, showing how
it performs with various parameter values and how it compares
to a baseline, “lawnmower” path planner. We next show results
for the high-priority path planner. To test the algorithm in
varying situations, we randomly placed 13 different radars
in the region with random parameters. We used 50 different



random configurations of the radar. The parameters we used
to randomly generate are shown in Table I. For each random
configuration, we sample the radar parameters from a uniform
distribution defined by the range provided in the table. For
example, the output power is sampled from a uniform dis-
tribution from P

t,l to P
t,u. All other parameters used in the

simulation experiments are shown in Table I.

Parameter Symbol Algorithm Value
Operational Region Bounds - - (22000, 22000)
Radar Output Power Upper PT,u - 20000 Watts
Radar Output Power Lower PT,l - 0 Watts
Radar Transmit Gain Upper GT,u - 20dB
Radar Transmit Gain Lower GT,l - 0dB
Radar Receive Gain GR - 10dB
Path Loss L - 0dB
Radar Wavelength λ - 99.9 millimeters
Radar Pulse Width τp - 0.000011 seconds
Radar System Temperature Ts - 745 Kelvin
Radar Probability of False Alarm Pfa - 745 Kelvin
Agent Intercept Antenna Gain GI - 1dB
Agent Radar Cross Section GI - 0.1 meters squared
Angle of Arrival Measurement Noise Variance σ2

ϕ - 2 Degrees
Received Power Measurement Noise Variance σ2

SE
- 0.1 milliwatts?

Probability of Intercept Loss δ Low Priority 1000
Covariance Objective Function Multiple dcov Low Priority 1e14
Re-plan Horizon Th Low Priority 20 Seconds
Agent Path History Period ∆te Low Priority 5 Seconds
Probability of Detection Threshold PD,t High Priority 15%
B-spline Degree ρ High Priority 3
Number of Control Points Nc High Priority 40
Start Location xh0

High Priority (0, 0)
Goal Location xhf

High Priority (22000, 22000)

Velocity Bounds vlb, vub High Priority 100, 134 m/s
Turn Rate Bounds ulb, uub High Priority −5, 5 rad/s
Maximum Curvature κub High Priority 0.1 rad/m
Probability of Detection Probability Threshold ϵ High Priority 0.9

TABLE I
SIMULATION PARAMETERS

We first show how varying the parameter of adjustment of
the low priority path planning algorithm (αe, αu, αs) affects
performance. We constrain the sum of the tuning parameters
to be one αe + αu + αs = 1. We then vary the value of each
tuning parameter with this constraint and test the algorithms
performance on the 50 random radar configurations. The
results of these tests are shown in Figures 4 and 5. The plots
use a ternary plot to show the effects of the three parameters.
Each side of the triangle represents the value of one parameter.
The lines in the plot show the grid where that parameter
is the same. Figure 4 shows the percentage of the random
runs where the low-priority agents were able to find a path
for the high-priority agent. As can be seen in the figure, the
parameters need to have a balance. Each coroner of the triangle
represents when all but one parameters is zero. None of these
parameters perform well. From the figure, the distance from
the target weight should be lower, with a value of αs = 0.083
showing the best performance. There also needs to be a
balance between exploration and covariance reduction with
the best performance occurring at αu = 0.667 and αe = 0.25.
In this case, the agents were able to find the path for the high-
priority agent in 94% of the random runs. Figure 5 shows the
average time it took for low-priority agents to find a path for
the high-priority agent with varying parameter values. This
only includes the successful runs (because in the runs that
were not successful, the agents never found a path for the
high-priority agent). It can be seen that increasing the distance
to the goal weight αs, decreases the average time to find the
path, however, in these cases a smaller percentage of runs were
successful.

0.86

0.92

0.26

0.30

0.06

0.28 0.32

0.43

0.36

0.72

0.72

0.82 0.84 0.34

0.54

0.28

0.30

0.26

0.38

0.78

0.32

0.46

0.10

0.88

0.72

0.30

0.94

0.28

0.080.28

0.76

0.50

0.40

0.62 0.300.66

0.35

0.30

0.80

0.90

0.68

0.86

0.82 0.36

0.76

0.34

0.28

0.64 0.36

0.62

0.86

0.08

0.74

0.56

0.46

0.57

0.08

0.60

0.66

0.86

0.68

0.80

0.70 0.86

0.16

0.88

0.70

0.38

0.90

0.78

0.68

0.48

0.31

0.34

0.34

0.68

0.40

0.24

0.76

0.60

0.54

0.74

0.76

0.76

0.30

0.30

0.88

0.82

0.44

0.34 0.28

0.70 0.000

0.083

0.167

0.250

0.333

0.417

0.500

0.583

0.667

0.750

0.833

0.917

1.000

1.000

0.917

0.833

0.750

0.667

0.583

0.500

0.417

0.333

0.250

0.167

0.083

0.000

0.000 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000

Ex
plo

rat
ion

 W
eig

ht 
( e)

Covariance Reduction Weight (
u )

Distance to Goal Weight ( d)

Percent Successful Runs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%

Fig. 4. This figure shows the percent of random runs where the low-priority
agents were able to find the path for the high-priority agents with varying
values of the exploration weight αe, the covariance reduction weight αu

and the distance to goal weight αs. The plot is a ternary plot, where each
parameter is represented by one side of the triangle. The color of the points
corresponds to the percent of runs that were successful.
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Fig. 5. This figure shows the average time it took for the low-priority agents
to find a path for the high-priority agent with varying levels of parameters.
The average time only includes runs that were successful (see Figure 4 for
how many runs were successful. The color of the points shows the average
time it took for the agents to find the path.

We next show a comparison of our low priority path plan-
ning algorithm with a baseline, “lawnmower” path planner.
The “lawnmower” path planner divides the region equally
between all agents and creates a sweeping pattern back and
forth for each agent in their section. We choose the “rung”
size of the pattern using the exploration objective function 38,
by picking a threshold of how likely an undiscovered radar
would lie in between rungs and solving for a distance. We also
allowed the “lawnmower” path planner to travel back down
through the region, splitting the original rungs in half. The
agents were limited to running for 1200 seconds for both our
algorithm and the “lawnmower” algorithm. Using our path
planner, the low-priority agents were able to find the high-
priority path in 94% of the random runs. The “lawnmower”
low-priority agents were able to find the high priority path in
86% of the runs. The timing results are shown in Figure 6. As
can be seen in the figure, the “lawnmower” path planner finds
the path in roughly the same amount of time each run. This is
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Fig. 6. This figure shows a box plot distribution of the time it took the low-
proirty agents to find the high priority path between the baseline “lawnmower”
path planner and our algorithm using the best parameters: αs = 0.083, αu =
0.667, αe = 0.25..

determined by how long it takes the agents to complete their
coverage paths. Our algorithm’s times are more distributed
because how its performance depends on the radar layout. Our
algorithm is able to find the high-priority path faster in all
cases but one than the “lawnmower” baseline.
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Fig. 7. This figures shows the average time it took for the low-proirty agents
to find a safe path for the high-priority agent using the best parameters from
the previous test: αs = 0.083, αu = 0.667, αe = 0.25. The time decreases
with increasing number of agents because there are more agents to rapidly
explore the environment. One standard deviation above and below the mean
time are shaded in the figure.

Figure 7 shows how our algorithm performs with varying
numbers of agents. The plot shows the mean time it took the
low-priority agents to find the high-priority path with varying
numbers of agents. The same 50 random scenario were used
in this test. The best parameters from the above tests were
used: αs = 0.083, αu = 0.667, αe = 0.25. As expected, with
increasing numbers of low-priority agents, the time it takes
them to find the high-priority path decreases because there
are more agents to explore the environment.

To show how well our high-priority path planning algorithm
performs we provide statistics from the run with 20 low-
priority agents and parameters αs = 0.083, αu = 0.667,
αe = 0.25 where the agents were able to find a safe path
in all 50 cases. To show how the path planner performs we
first report the average maximum ground truth PD accounted
along the trajectories. We evaluate the ground truth PD along
each of the 50 planned paths and find the maximum, then

compute the average, which is 11.59%. This is below the 15%
threshold used in the algorithm. The maximum ground truth
PD was above the 15% threshold in 3 cases, meaning the
success rate of the probabilistic threshold was 94%. We used
a 90% threshold so we would expect the probabilistic threshold
to work in about 90% of the cases if the linearization of the
PD was accurate.

I am considering adding a couple figures here where I vary
the PD threshold and the confidence threshold.

IX. CONCLUSION

In this paper, we presented three path planning algorithms
for operating in contested enemy environments using the
paradigm of low-cost scouting agents and a high-priority
agent with a specific mission. The enemy environment was
characterized by enemy radar, and we modeled the probability
of detection from those radar. We assumed low-priority agents
could intercept enemy radar signals and estimate parameters
of enemy radar from the intercepted signals. The low-priority
agents were tasked with exploring the environment to find
a safe path for the high-priority agent. We ed a decentral-
ized path planning algorithm for the low-priority agents that
planned paths to discover undiscovered enemy radar stations
and to measurement locations to reduce the uncertainty in
the estimate of the discovered radar. We provided simulation
results to compare our method with a “lawnmower” baseline
and show improved performance. We also presented two
algorithms for the high-priority agent, one for the deterministic
case, where all radar parameters are known, and the other
for when the radar parameters are uncertain. Both rely on
using a Voronoi diagram and the A-star algorithm to find an
initial feasible trajectory through enemy radar, and then refine
that trajectory using an interior point optimization algorithm,
accounting for kinematic feasibility and PD constraints. Future
work includes accounting for agent RCS that varies with the
view angle of the vehicle (in this work we assume RCS was
the same from all angles). This could be incorporated into our
algorithms by using the maximum RCS of the vehicle when
selecting the initial trajectory, then allowing the optimization
algorithm to vary the view angle of the vehicle using the true
RCS to improve performance.
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